Conformational analysis of N₂F₄ inside C₆₀ and C₈₀ Fullerenes

Alnajjar Radwan A.^{1,2*}, Dakhil Otman O.¹, Saleh Taiseer A.K.³ and Elgahni Ahab L.⁴

1. Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, LIBYA

2. Department of Chemistry, University of Cape Town, Rondebosch 7701, SOUTH AFRICA

Department of Chemistry, College of Education, Samarra University, Salahaldeen, IRAQ
 Department of chemistry, Faculty of Science, University of Ajdabiya, Ajdabiya, LIBYA

*Radwan.Alnajjar@uob.edu.ly

Abstract

Investigation of structural properties of the tetrafluorohydrazine molecule inside C_{60} and C_{80} fullerenes using the hybrid DFT method. PBE/3 ζ revealed in the contraction of the N–N and N–F bond length, decreasing the N–N–F angle and a noticeable increase in the rotation barrier about the N–N bond.

The gauche conformer was found to be minimum inside both fullerenes unlike the free N_2F_4 which prefers antiform, the molecular parameters. The rotations energies for all conformers were calculated, reported and investigated. The quantum chemical properties such as E_{HOMO} , E_{LUMO} , the energy gap (E_g), ionization potential (1), electron affinity (A), electronegativity (χ), global hardness (η) softness (S) were also reported.

Keywords: N₂F₄, DFT, Conformational analysis, Fullerenes, Priroda software.

Introduction

Tetrafluorohydrazine is an organic compound with N₂F₄ formula, the determination of its structure was first done by Lide and Mann¹ using microwave spectroscopy, and found to be in a gauche form with N-N and N-F bond length of 147 pm and 137 pm respectively and the bond angles were F-N- $F=108^{\circ}$ and $F-N-F=65^{\circ}$. These values were corrected later by Gilbert² and became N-N 1.492Å, N-F 1.372Å, F-N-F 64°, and N-N-F 101.4°. Lide and Mann1 also calculated the rotational barrier to be approximately 3.00 kcal mol⁻¹ with the presence of 10% of gauche conformer at 200K. Infrared spectroscopy and electron diffraction and found that the antiform is more stable than gauche by 0.7-1.2 kcal mol⁻¹. ¹⁹F-NMR study in non-polar solvent shows coexistence of both⁵. Tetrafluorohydrazine dissociates readily in the gas and liquid phase to NF2.6 In recent years the study of small molecules behaviors encapsulated inside fullerenes and nanotubes gained a great interest. A notable change in the rotational barrier and structure parameter was found for

ethane⁷, hydrazine⁸, dimethyl ether⁹ and 1,1,1-trifluoroethane.¹⁰

Attempting to determine the influence of encapsulation on the N₂F₄ molecule inside fullerenes, density functional theory (DFT) computational approach was used to determine the physical properties and energies of the N₂F₄ encapsulated inside C₆₀ and C₈₀ fullerenes and the impact of these fullerenes on the conformations and structural parameters of the N₂F₄ molecule.

Computational Methods

All calculations were conducted using Priroda- 04^{11} and Hyperchem software¹², molecule was optimized first at AM1 semi-empirical approximation using Hyperchem, and then density functional theory was used by Perdew et al¹³ in hybrid function and triple zeta (3ζ) basis set (Priroda-04), a scanning of F–N–N–F dihedral by 60 steps with 6° for each step and 360° in total. Chemcraft¹⁴ software was used to visualize the results. Internal energy, activation energy, Gibes free energy, enthalpy change, and partial charges were reported. One imaginary frequency distinguished all

transition states. The electronic properties of all system such as E_{HOMO} , E_{LUMO} , the energy gap between LUMO and HOMO, the ionization potential (I=- E_{HOMO}), electron affinity (A=- E_{LUMO}), global hardness (η =I-A/2), electronegativity (χ =I+A/2), electronic chemical potential (μ =-(I+A)/2), electrophilicity (ω = μ 2/2 η), chemical softness (S=1/ η) were calculated.¹⁵

Results and Discussion

Tetrafluorohydrazine was studied previously both experimentally⁴ and theoretically at different levels of theories ¹⁶. N₂F₄ has two possible conformations around the N-N bond anti and gauche forms, the transformation between these two forms goes via eclipsed transition state. Previous studies include only the rotation of the N-N bond with 180° and found that the gauche rotamer is more stable by 3.4 kcal mol⁻¹.¹⁶ Figure 1 shows the possible rotamers of tetrafluorohydrazine.

The current calculations were carried out at the PBE/3 ζ level of theory, the obtained results form this level of theory such as bond angle and dihedral angle are in good agreement with the previously obtained results at MP2/6-31g* level and the experimental results. The PBE/3 ζ calculations show a deviation in bond length by about 0.027Å and 0,093Å for F-N and N-N bonds respectively compared with the experimental results. Table 1 shows the N₂F₄ parameters of

the PBE/3 ζ results compared with the MP2/6-31G* levels¹⁷ and the experimental results.²

A conformational analysis around the N-N bond followed by the analysis of the stationary points on the potential energy surface led to identifying the anti-conformer structure as minimal. Figure 2 shows the structure of the anti-conformer of tetrafluorohydrazine calculated at PBE/3 ζ levels.

The potential surface scan of the N-N bonds shows five stationary points(I-V), analysis of this points led to identifying of point II and IV as stable conforms. Points I, II, and V are transition states conformers. Conformer IV which is the minimal global conformer was found to be in the antiform. Conformer II, on the other hand, is local minima with 0.52 kcal mol⁻¹ energy difference comparing to conformer IV. Conformer I is global maxima with 6.50 kcal mol⁻¹ energy difference compared with the global minima conformer IV, the other conformers III and V are local maxima with almost equal energies difference of 3.1 kcal mol⁻¹ related to conformer IV (global minima). The reason that conformers III and V are more stable than conformer I is because the repulsion between the two lone pairs in conformer I is unfavorable compared with the bond-pair lone-pair repulsion presence in conformers III and V. Table 2 shows the energies of all conformers; figure 3 shows the potential energy surface of the rotation around the N-N bond.

Anti

Eclipsed

Gauch

syn

Figure 1: Conformers of Tetrafluorohydrazine. Table 1

	F-N	N-N	F-N-F	F-N-N	F-N-N-F
PBE/3ζ	1.401	1.585	102.8	99.2	179.7
MP2/6-31G*	1.374	1.507	103.2	99.8	179.9
Experimental	1.372	1.492	102.9	100.6	180.0

Table 2
Calculated (PBE/3 ζ) energies for N ₂ F ₄ conformers

Form	ΔE (kcal mol ⁻¹)	ΔH (kcal mol ⁻¹)	ΔG (kcal mol ⁻¹)	ΔS (cal mol-1K-1)	∠FNNF degree
Ι	0.52	0.42	0.50	-0.26	-175.71
II	6.50	5.70	6.65	-3.18	-108.46
III	3.11	2.40	3.42	-3.45	19.93
IV	0.00	0.00	0.00	0.00	74.953
V	3.10	2.38	3.41	-3.44	129.98

Figure 2: The minimal structure of N₂F₄

Figure 3: The relative energy of N₂F₄ as a function of F-N-N-F dihedral angle

Calculations at PBE/3z level show that the fullerene cavities of C₆₀ and C₈₀ have a high impact on the parameters of the N₂F₄ structure, C₆₀ cavity is smaller than C₈₀, and hence the C₆₀ has more impact on the N₂F₄ structural parameters. Inside the C₆₀ the F-N bonds length decreased by 0.052Å and the N-N bond contracted by about 0.176Å. A decrease in the F-N-F and F-N-N bonds by 4.15° and 4.21° was also noted, the dihedral angle of the structure changed from the antiform ϕ =179.7° into the gauche form ϕ = -51.4°.

On the other hand, the C_{80} fullerene has a lower impact on the N_2F_4 parameters, the F-N and N-N bond lengths were reduced by 0.019Å and 0.208 respectively, C_{80} impact on the F-N-F and the F-N-N angle was also small and can be neglected. The preferable conformer inside C_{80} was found to be gauche like the C_{60} capsule. Table 3 shows the parameters for free N_2F_4 and N_2F_4 encapsulated inside C_{60} and C_{80} .

The rotational barrier of N_2F_4 inside C_{60} changed dramatically. The energy required for N-N rotation changed from 6.50 kcal mol⁻¹ in case of free N_2F_4 into 42.56 kcal mol⁻¹ inside the C_{60} . Six conformers were found inside the C_{60} (Figure 4) with two global minima conformers, one local

minima conformer, and three conformers represent a transition states. The rotation from gauche conformer II into its equivalent conformer IV threw conformer III as a transition state and required 13 kcal mol⁻¹, conformers I and V are transition states between two gauche forms (IV and VI). The energy required for this rotation was extremely high 42.56 kcal mol⁻¹ as the structures of conformers I and V have a large volume and will not be favorable inside the C₆₀ cavity, conformer III has dihedral angle of ϕ =0.00 and the two lone pairs on nitrogen are eclipsed to each other, typically this conformer is highly unfavorable, unexpectedly inside the C₆₀ found to be more stable than the bond-pair lone-pair gauche transition state conformers(I and V) with about 30 kcal mol⁻¹ energy difference. Table 4 presents the energies of all conforms of N₂F₄ inside the C₆₀.

The scaffold of C_{80} nanotube has influenced the N_2F_4 parameter as well; the potential energy surface shows six stationary points I, II, III, IV, V, and VI. Conformers I and III are identical and represent a global minimum, while structures IV and VI represent global maximum. The rotation energy around the N-N bond decreased by approximately 30 kcal mol⁻¹ compared to C_{60} capsule and doubled the required energy for free molecules. Again and similar to the C_{60} the gauche conformer was found to be the global minima and about 8 kcal mol⁻¹ is required to rotate conformer I into conformer III, this rotation goes via syn transition state with lone pair perpendicular to each other and dihedral angle of ϕ =0.5. The anti conformer inside the C₈₀

was found to be local minima with a dihedral angle of ϕ =174 and 7.6 kcal mol⁻¹ higher than the gauche conformer. Table 5 shows the relative energies of the founded conformers. Figure 5 represents the potential energy surface for N-N rotation inside C₈₀ fullerene.

Table 3
Bond length(Å), bond angle (°) and dihedral angle (°) for N ₂ F ₄ conformers

	F-N	N-N	F-N-F	F-N-N	∠F-N-N-F
Free N ₂ F ₄	1.402	1.585	102.81	99.20	179.7
C ₆₀ Capsule	1.350	1.409	98.66	94.99	-51.4
C ₈₀ Capsule	1.383	1.477	102.8	98.62	-56.9

Table 4
Calculated (PBE/3ζ) energies for C ₆₀ capsule conformer

Form			ΔG	ΔS	∠F-N-N-F
	(kcal mol ⁻¹)	(kcal mol ⁻¹)	(kcal mol ⁻¹)	(cal mol-1K-1)	degree
Ι	40.05	38.92	39.87	-3.17	-132.2
II	0.00	-0.01	-0.13	0.39	-51.4
III	13.00	12.31	13.01	-2.37	0.0
IV	0.00	0.00	0.00	0.00	52.6
V	42.56	40.81	42.61	-6.05	137.8
VI	30.28	29.92	30.12	-0.68	-179.9

Figure 4: The relative energy of N_2F_4 as a function of F-N-N-F dihedral angle inside C_{60}

Form	ΔΕ	ΔH	ΔG	ΔS	F-N-N-F
	(kcal mol ⁻¹)	(kcal mol ⁻¹)	(kcal mol ⁻¹)	(cal mol ⁻¹ K ⁻¹)	angle
Ι	0.00	0.00	0.00	0.00	-56.9
II	8.40	6.91	9.31	-8.04	0.5
III	0.17	0.10	-1.61	5.73	59.1
IV	12.93	10.36	16.77	-21.50	131.8
V	7.62	6.89	8.75	-6.24	174.6

 Table 5

 Calculated (PBE/3ζ) energies for C₈₀ capsule conformer

The charges of the of encapsulated molecules are found to be affected by the wall of the fullerene scaffold. Table 6 shows the charges change in each system, C_{60} and C_{80} fullerene have impacts on the N₂F₄ molecule, the positive charge on nitrogen atom has decreased by 0.05 and the negative charge on the fluorine atoms increased by 0.03, which indicates the donation of electrons from the fullerenes toward the N₂F₄ molecule. On energetical point of view using equation 1, the capsulation systems were found to be highly unfavored, the energies differences were found to be 173.05 kcal mol⁻¹ and 32.13 kcal mol⁻¹ for C₆₀ and C₈₀ respectively, the high energy in the C₆₀ capsule is due to small cavity compared to C₈₀ capsule. Table 7 shows the energies of both systems. Finally the E_{HOMO} , E_{LUMO} , the energy gap between LUMO and HOMO, the ionization potential $(I=-E_{HOMO})$, electron affinity global hardness $(A = -E_{LUMO}),$ (n=I-A/2). electronegativity (χ =I+A/2), electronic chemical potential (μ =-(I+A)/2), electrophilicity (ω = μ 2/2 η), and chemical softness (S=1/n) were listed in table 8. The energy of HOMO is directly related to the ionization potential (I) while the energy of LUMO is related to the electron affinity (A). The global hardness (η) corresponds to the energy gap between HOMO and LUMO. A molecule with a small energy gap has high chemical reactivity, low kinetic stability and is a soft molecule, while a hard molecule has a large energy gap.

Figure 5: The relative energy of N₂F₄ as a function of F-N-N-F dihedral inside C₈₀

Table 6Calculated charges for N2F4 in different systems

	N1	N2	F1	F2	F3	F4
Free	0.2764	0.2762	-0.1379	-0.1384	-0.1380	-0.1383
C ₆₀	0.2244	0.2245	-0.1715	-0.1752	-0.1716	-0.1752
C ₈₀	0.2610	0.2615	-0.1787	-0.1969	-0.1795	-0.1965

 $E_{encapsulation} = [E_{capsule}] - [E_{N2F4} + E_{empty-fullerene}]$

Figure 6: Encapsulation equation

(1)

	Ε	ΔΗ	ΔG	S
	(kcal mol ⁻¹)	(kcal mol ⁻¹)	(kcal mol ⁻¹)	(cal mol ⁻¹ K ⁻¹)
N_2F_4	-318983.51	8949.41	-5431.28	76.86
Empty-C ₆₀	-1433417.08	153714.41	127944.79	137.74
C ₆₀ Capsule	-1752227.54	161466.23	131886.12	158.10
Encapsulation C ₆₀	173.05	-1197.60	9372.61	-56.50
Empty-C ₈₀	-1911295.46	203409.21	171556.27	170.25
C ₈₀ Capsule	-2230246.83	212820.29	174811.66	203.15
Encapsulation C ₈₀	32.13	461.66	8686.68	32.90

 Table 7

 Calculated encapsulation energies for C₆₀ and C₈₀ systems

N2F4 eV C60 eV C80 eV LUMO -2.46 -4.48 -5.26 HOMO -7.98 -5.97 -5.40				
LUMO -2.46 -4.48 -5.26 HOMO -7.98 -5.97 -5.40		N ₂ F ₄ eV	C60 eV	C ₈₀ eV
НОМО -7.98 -5.97 -5.40	LUMO	-2.46	-4.48	-5.26
	HOMO	-7.98	-5.97	-5.40
E _g 5.522 1.493 0.1467	Eg	5.522	1.493	0.1467
<i>I</i> 7.98 5.97 5.40	Ι	7.98	5.97	5.40
A 2.46 4.48 5.26	Α	2.46	4.48	5.26
η 2.76 0.75 0.07	η	2.76	0.75	0.07
χ 5.22 5.22 5.33	χ	5.22	5.22	5.33
μ -5.22 -5.33	μ	-5.22	-5.22	-5.33
ω 4.93 18.27 193.75	ω	4.93	18.27	193.75
S 0.36 1.34 13.63	S	0.36	1.34	13.63

Conclusion

The size of the fullerene substantially affects the conformational properties of the encapsulated molecule, leading to the changes in bond lengths, bond and torsion angles together with significant variations in the relative stability of possible conformations in comparison with a free molecule. The Gauche conformer was found to be more stable than anti conformer inside both fullerenes, a notable change in rotation energy around N-N bond inside the fullerenes compared to free molecules, and both C_{60} and C_{80} capsule were found to be energetically unfavored.

References

1. Lide D.R. Jr. and Mann D., *The Journal of Chemical Physics*, **31(4)**, 1129-1130 (**1959**)

2. Gilbert L.O., The ecology of urban habitats, London, Chapman and Hall Ltd. (1989)

3. Koster D.F. and Miller F.A., *Spectrochimica Acta Part A: Molecular Spectroscopy*, **24(9)**, 1487-1493 (**1968**)

4. Cardillo M.J. and Bauer S.H., *Inorganic Chemistry*, **8(10)**, 2086-2092 (1969)

5. a) Colburn C.B., Johnson F.A. and Haney C., *The Journal of Chemical Physics*, **43(12)**, 4526-4527 (**1965**)

b) Johnson F.A., Aycock B.F., Haney C. and Colburn C.B., *Journal of Molecular Spectroscopy*, **31**(1), 66-69 (**1969**)

6. Davies P.B., Kho C.J., Leong W.K. and Lewis-Bevan W., *Journal of the Chemical Society, Chemical Communications*, **12**, 690-691 (**1982**)

7. Kuznetsov V.V., *Russian Journal of General Chemistry*, **86(6)**, 1444-1446 (**2016**)

8. Kuznetsov V.V., *Russian Journal of General Chemistry*, **86(9)**, 2000-2007 (**2016**)

9. Kuznetsov V.V., *Russian Journal of Organic Chemistry*, **52(12)**, 1835-1841 (**2016**)

10. Kuznetsov V.V., *Russian Journal of Organic Chemistry*, **53(3)**, 449-453 (**2017**)

11. Laikov D. and Ustynyuk Y.A., *Russian Chemical Bulletin*, **54(3)**, 820-826 (**2005**)

12. Hyper Chem R., ed., Inc (2002)

13. Perdew J.P., Burke K. and Ernzerhof M., *Physical Review Letters*, **77(18)**, 3865-3868 (**1996**)

14. Zhurko G. and Zhurko D., URL: http://www.chemcraftprog. com (2009)

15. Domingo L.R., Aurell M.J., Pérez P. and Contreras R., *The Journal of Physical Chemistry A*, **106**(**29**), 6871-6875 (**2002**)

16. Jursic B.S., *Journal of Molecular Structure: THEOCHEM*, **434(1–3)**, 67-73 (**1998**)

17. Wilcox C.F. and Bauer S.H., *Journal of Molecular Structure: THEOCHEM*, **625**(1–3), 1-8 (2003).