Isolation and Identification of Quercetin Derivatives and their α-Glucosidase Inhibitory Acitivities from *Bryophyllum pinnatum*

Fajriah Sofa*, Darmawan Akhmad, Megawati Megawati and Hanafi Muhammad

Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Serpong Tangerang Selatan, Banten, 15314, INDONESIA *sofa002@lipi.go.id; sofafajriah@gmail.com

Abstract

In our ongoing investigation on chemical constituents from Indonesian medicinal plants, we have isolated and evaluated antidiabetic effects on α -glucosidase of quercetin derivatives from Bryophyllum pinnatum leaves. The methanolic extract was first separated into *n*-hexane, ethyl acetate and water-soluble fractions. The ethyl acetate fraction was further purified with silica gel column chromatography techniques based on bioassay guided fractionation which led to 3',4'dimethoxy quercetin and two flavonoid glycosides, quercetin 3-O- α -L-rhamnoside (1) and quercetin-3-O- α -L-arabinopyranosyl (1 \rightarrow 2) α -L-rhamnopyranoside (2).

The chemical structures were determined by extensive spectroscopic analyses, namely, UV/Vis, FTIR, LCMS, 1D and 2D NMR. All isolated compounds have α -glucosidase inhibitory activity with IC₅₀103.20, 83.83 and 110.52 µg/mL respectively.

Keywords: *Bryophyllum pinnatum*, α-glucosidase inhibitors, quercetin derivatives.

Introduction

Diabetes mellitus, among the most prevalent diseases worldwide, is a chronic metabolic disorder characterized by hyperglycemia and accompanied by various chronic vascular complications. Therefore, the control of postprandial blood glucose surges is critical for the treatment of diabetes². Synthetic amylase and α -glucosidase inhibitors, for example, acarbose, are widely applied in the treatment of patients with type II diabetes. They are, however, reported to cause various side-effects. Consequently, safer natural amylase and α -glucosidase inhibitors are desired and many compounds have been reported to be derived from plant sources³⁻⁷.

Bryophyllum pinnatum (synonims: B. calycinum, Kalanchoe pinnata (Lam.) Pers. (family Crassulaceae) is a medicinal plant widely used in folk medicine for the treatment of gastric ulcers, pulmonary infections and rheumatoid arthritis^{8,9}. Previous studies in the literature on the chemical composition of *B. pinnatum* demonstrate that bufadienolides, terpenoids and flavonoids are the main secondary metabolites of this species^{10,11}. Thus, in our ongoing study, we isolate and identify two flavonoid glycosides from *B. pinnatum* leaves and test their α -glucosidase inhibitory activity using α -glucosidase enzyme including 3',4'-dimethoxy quercetin from previous research.

Material and Methods

Plant Material: *B. pinnatum* leaves material samples were collected from Ballitro, Bogor, West Java, Indonesia. The plant was identified by staff at the Research Center for Biology, Indonesian Institute of Sciences (LIPI).

General Experiment: ¹H- and ¹³C-NMR spectra were recorded with JEOL JNM ECA-500 spectrometer, operating at 500 MHz (¹H-) and 125.76 MHz (¹³C-), using TMS (Tetra Methyl Silane) as an internal standard. MS were obtained with a Mariner Biospectrometry spectrometer using System ESI (Electrospray Ionisation) and positive ion mode. The FTIR spectrum was recorded with shimadzu Prestige-21 and the UV/Vis spectrum was recorded with Hitachi U-2000. A melting point experiment was obtained using Fisher Sicentific apparatus. Column chromatography was carried out using Merck Silica gel 60 (.70 - 230 mesh ASTM) and TLC (Thin Layer Chromatography) analysis on precoated Silica gel plates (Merck Kieselgel 60 F 254, 0.25 mm).

Extraction, Isolation and Identification: The dried leaves (1.7 kg) of *B. pinnatum* were extracted thoroughly using a macerator with methanol. The methanol extracts (100 g) were concentrated using a vacuum rotary evaporator and then partitioned with *n*-hexane-water (1:1), followed by ethyl acetate-water (1:1). The ethyl acetate fraction (4.05 g) was further separated using a vacuum column chromatography technique based on bioassay guided fractionation and obtained nine fractions. Each fraction was tested for its α -glucosidase inhibitory activity and the active fractions were further purified using chromatography techniques on silica gel.

Fraction 6 was isolated using column chromatography with a gradient of *n*-hexane-EtoAc solvent,and obtained compound 3',4'-dimethoxy quercetin¹², but the α glucosidase inhibitory activity was not done. Fraction 7 (0.5 g) was further purified using a column chromatography tecnique on silica gel with gradien elution (*n*-hexane-ethyl acetate) and a yellow crystal was obtained of compound 1 (100 mg). On the other hand, fraction 9 (50 mg) underwent recrystallization using chloroform methanol (1:1) and yielded compound 2 (20 mg). Compounds 1 and 2 were identified using UV/Vis, FT-IR, LC-MS and FT-NMR. Compounds 1 and 2, along with 3',4'-dimethoxy quercetin were examined in terms of their α -glucosidase inhibitory activity using α -glucosidase enzyme.

Inhibition assay for α-glucosidase activity: α-Glucosidase inhibitory activity evaluation of the extracts was performed using an established procedure¹³. α-Glucosidase enzyme solution was dissolved in a phosphate-buffer solution (pH 7) containing 200 mg albumin serum. Prior to its application, 1 mL of the enzyme solution was diluted 25 times with the buffer solution. The reaction mixture comprised 250 µL of 20 mM *p*-nitrophenyl α-D-glucopyranose as the substrate and 490 µL of 100 mM phosphate buffer (pH 7).

10 μ L of the extract dissolved in DMSO was prepared. The reaction mixture was then water-bath incubated at 37°C for 5 minutes. The enzyme solution (250 μ L) was added and the solution was incubated for 15 minutes. The enzyme reaction was stopped by the addition of 1000 μ L, 200 mM sodium carbonate solution.

The resulted *p*-nitrophenol from the reaction was measured at λ 400 nm. As positive control, the reaction of 1% of quercetin solution was measured. The commercial α glucosidase anti-diabetic drug, glucobay, was available in the laboratory only in theform of sustain release tablets. Therefore, quercetin was selected for positive control for *in vitro* evaluation. Sample concentrations for activity evaluation were 6.25, 12.5, 25, 50, 100 µg/mL at concentrations of 0.78, 1.56, 3.12, 6.25, 12.5 µg/mL respectively for quercetin.

Results and Discussion

Isolation and Identification: The crude methanolic extract of *B. pinnatum* leaves demonstrated strong inhibitory activity with IC₅₀ 32.06 µg/mL. Partitioning of the methanolic extract using water, *n*-hexane and ethyl acetate yielded 20.77 g of *n*-hexane soluble extract (BPH), 4.05 g of EtOAc-soluble extract (BPE) and 50 g of water soluble extract (BPW). BPE demonstrated the highest inhibitory activity against α -glucosidese (IC₅₀ 18.46 µg/mL) compared with BPH (IC₅₀ 83.20 µg/mL) and BPW (IC₅₀ 41.55 µg/mL).

Due to its high α -glucosidese inhibitory activity, BPE was selected for further investigation. BPE was subjected to silica gel column chromatography using *n*-hexane, ethyl acetate and MeOH gradient to yield nine fractions (fraction 1 (0.06%); 2 (0.27%); 3 (2.23%); 4 (1.84%); 5 (6.86%); 6 (6.86%); 7 (16.37%); 8 (9.75%); 9 (30.95%)).

The nine collected fractions were subjected to α -glucosidese inhibitory activity assay. Fractions 6, 7 and 9 had significant inhibitory activity as shown in fig. 1. Fraction 6 was investigated in previous research¹² and resulted in 3',4'dimethoxy-quercetin, but its α -glucosidese inhibitory activity was not evaluated. The active fraction 7 was further purified using a column chromatography tecnique on silica gel using gradien elution (*n*-hexane-ethyl acetate) to obtain compound 1.

On the other hand, fraction 9 underwent recrystallization using chloroform methanol and yielded compound 2. The isolates were successfully identified by the consistence of the spectral data with those in reference.

Compound 1 was isolated as a yellow crystal (mp. 178-179°C) with molecular weight m/z 448.92 [M + H]⁺ corresponding to the molecular formula $C_{21}H_{20}O_{11}$. The UV spectrum displayed typical absorption bands for flavonoid skeleton at λ_{max} 210, 255 and 349 nm⁷, with IR absorption bands at 3530, 2951 and 1602 cm⁻¹, due to hydroxyl, aliphatic and unconjugated carbonyl functionalities respectively.

A typical flavonoid signal was observed in the ¹H-NMR spectra of compound 1. Singlet signals at δ 12.71 indicate the presence of 5-OH in flavonoids. The ¹H-NMR spectrum of compound 1 (Acetone-*d*₆, 500 MHz) indicates a flavonoid with an ABX system ring at δ 7.36 (1H, dd, *J* = 1.53 and 8.41 Hz), 6.96 (1H, d, *J* = 8.41) and 7.47 (1H, d, *J* = 1.53) in the Bring. The existence of H-6 and -8 was confirmed by two doublet signals (δ 6.24 (*J* = 2.29 Hz) and 6.44 (*J* = 2.29 Hz) respectively).

The presence of a rhamnoside unit was suggested by a characteristic methyl doublet at $\delta 0.88$ (J = 6.12 Hz) and a broad doublet corresponding to the anomeric proton at δ 5.49 with a coupling constant J = 1.3 Hz indicated that the rhamnose unit has α -configuration. The ¹³C NMR spectrum 125 MHz), combined with HMOC (Acetone-d₆, experiments, indicated 21 carbons comprising 10 quartenary carbons, 10 methine carbons and a methyl carbon. A terminal methyl group at d 0.88 (H-6") indicated a ²J HMBC correlation with C-5 (& 70.5). Furthermore, HMBC longrange correlation (fig. 1) was observed between H-1" (δ 5.49) and C-3 (δ 134.9) in agreement with the Orhamnopyranoside unit at C-3. Hence, compound 1 compared with prior work in the literature^{14,15} was elucidated as quercetin 3-O- α -L-rhamnoside, trivially referred to as quercitrin.

Compound 2 was obtained as amorphous yellow powder with molecular weight m/z 580.62 [M + H]⁺, consistent with the molecular formula C₂₆H₂₈O₁₅. UV absorption at 210, 255, 347 nm suggested the presence of a flavonoid skeleton⁷. IR absorption for an unconjugated carbonyl was noted at 1605 cm⁻¹, while other bands were assigned to hydroxyl (3532 cm⁻¹) and aliphatic (2912 and 2868 cm⁻¹) groups. The NMR spectra (1D and 2D) of compound 2 were similar to compound 1 (table 2),and showed a quercetin aglycone and a rhamnopyranosyl unit. The presence of a second carbohydrate unit which was identified in compound 2 did not appear in compound 1. Five additional ¹³C signals (CD₃OD, 125 MHz) were observed at δ , namely, 106.5, 72.9, 71.4, 68.5 and 66.1.This indicates the presence of a second carbohydrate unit which was identified as an arabinopyranosyl group from analysis of the ¹H–¹H coupling constants and by comparison with ¹³C NMR spectroscopic data in the literature¹¹. The large coupling constant (7.64 Hz) corresponding to the anomeric H- 1^{'''} (δ 4.19) at HMBC spectrum indicated a di-axial relation with H-2^{'''}, consistent with the presence of an α arabinopyranose moiety (fig. 2).

According to the NMR spectroscopic data, the α arabinopyranosyl moiety was inferred to be linked to the 2"position of 3-O-rhamnopyranosyl unit (δ 81.5 (C-2")). This substitution pattern agrees with the deshielding effect observed for the C-2" signal (+10 ppm) when compared to the C-2 signal of an unsubstituted 3-O-rhamnosyl unit¹¹. According to these data, compound 2 was concluded to be quercetin-3-O- α -L-arabinopyranosyl (1 \rightarrow 2) α -Lrhamnopyranoside (fig. 3).

\alpha-Glucosidase Inhibitory Activity: The isolated flavonoid glycoside 1 and 2, along with 3',4'-dimethoxy quercetin, were carried out for α -glucosidase inhibitory activity. The results were presented as a measure of the compound's effectiveness in inhibiting α -glucosidase function. The IC₅₀ calculation demonstrates that compound 1 has the highest inhibition among all those isolated from *B. pinnatum* leaves

in this study followed by compound 2 and 3',4'-dimethoxy quercetin (table 3).

Upon comparison of flavonoids 1 and 2, both contain a quercetin aglycone. The difference in their activity profile is related to the presence of the arabinosyl unit linked at the inner rhamnosyl unit in flavonoid 2 and it decreased the α -glucosidase inhibitory activity¹¹. However, all isolated compounds have weaker activities compared to quercetin as positive control. It was suggested that position 3-OH is an important group to increase the activity¹⁶, besides the methyl group in 3',4'-dimethoxy quercetin decreasing the α -glucosidase inhibitory activity.

Conclusion

Bioassay-guided isolation on α -glucosidase inhibitory activity afforded a 3',4'-dimethoxy quercetin and two flavonoid glycosides:quercetin 3-O- α -L-rhamnoside (1) and quercetin-3-O- α -L-arabinopyranosyl (1 \rightarrow 2) α -Lrhamnopyranoside (2). All isolated coompounds have α glucosidase inhibitory activity with IC₅₀103.20, 83.83 and 110.52 µg/mL respectively.

Acknowledgement

This work was supported by DIKTI Research Project. The authors thanks to Puspa Dewi N. Lotulung, M.Sc for LCMS measurement and Prof. Dr. Soleh Kosela for valuable discussion.

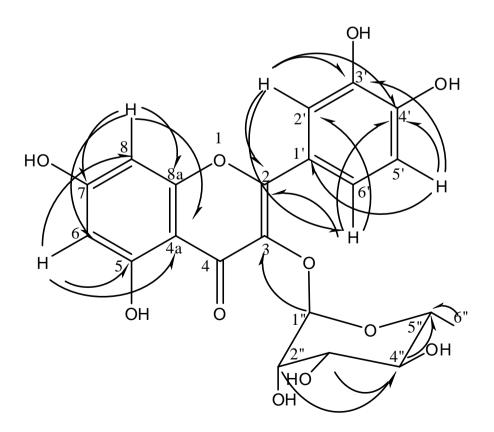


Figure 1: Selected HMBC correlation of compound 1

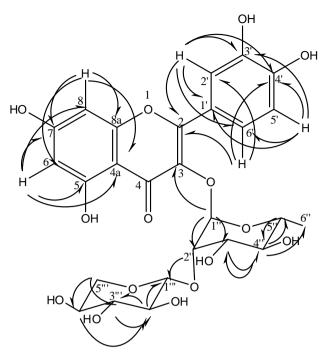


Figure 2: Selected HMBC correlation of compound 2

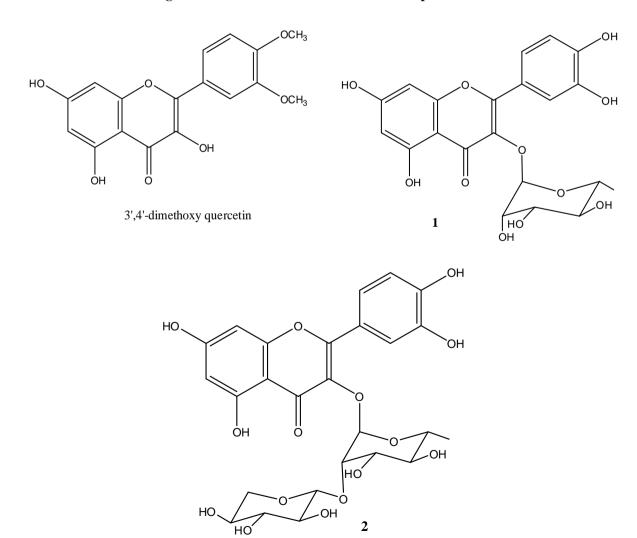


Figure 3: Isolated compounds from *Bryophyllum pinnatum* leaves: 3',4'-dimethoxy quercetin,quercetin 3-O-α-L-rhamnoside (1) and quercetin-3-O-α-L-arabinopyranosyl (1→2) α-L-rhamnopyranoside (2).

Table 1 α-Glucosidase inhibitory activity for fractions 1-9 from ethyl acetate fraction of *B. pinnatum* leaves

Fraction	IC ₅₀	Fraction	IC ₅₀
	(µg/mL)		(μ g/mL)
1	NA	6	160.31
2	NA	7	83.83
3	NA	8	126.13
4	NA	9	91.40
5	207.88		

Table 2 ¹H- and ¹³C-NMR spectroscopic data for compound 1 and 2

Proton and Carbon No.	δ _H -NMR (ppm), multiplicity, J (Hz)		δ _C -NMR (ppm)	
	Compound 1 (Acetone-d ₆)	Compound 2 (CD ₃ OD)	Compound 1 (Acetone-d6)	Compound 2 (CD ₃ OD)
2			157.6	157.8
3			134.9	135.5
4			178.5	178.4
4a			104.9	104.4
5			162.4	161.9
6	6.24, <i>d</i> , 2.29	6.18, <i>d</i> , 1.72	98.7	98.6
7			164.1	164.7
8	6.44, <i>d</i> , 2,.9	6.34, <i>d</i> , 1.72	93.7	93.5
8a			157.1	157.2
1'			122.0	122.6
2'	7.47, <i>d</i> , 1.53	7.35, <i>d</i> , 1.72	115.9	115.5
3'			145.0	145.2
4'			148.2	148.5
5'	6.96, <i>d</i> , 8.41	6.9, <i>d</i> , 8.02	115.3	115.2
6'	7.36, <i>dd</i> , 1.53; 8.41	7.29, <i>dd</i> , 1.72; 8.02	121.8	121.4
1"	5.49, <i>d</i> , 1,53	5.35, <i>d</i> , 1.53	101.9	101.9
2"	4.18, <i>dd</i> , 1.5; 1.5	4.17, <i>m</i>	70.6	81.4
3"	3.68, <i>dd</i> , 3.82; 3.82	3.85, <i>dd</i> , 3.44; 3.44	71.3	70.4
4"	3.32, <i>dd</i> , 8.41; 9.17	3.33, <i>dd</i> , 9.74; 9.74	70.5	72.4
5"	3.37, <i>dq</i> , 9.17; 6.12	3.88, <i>dq</i> , 9.74; 6.12	72.2	70.6
6"	0.88, <i>d</i> , 6.12	1.0, <i>d</i> , 6.12	16.9	16.4
1""		4.19, <i>d</i> , 7.64	157.6	106.5
2""		3.51, <i>dd</i> , 7.64; 9.17	134.9	71.4
3""		3.46, , <i>dd</i> , 3.06; 9.17	178.5	72.9
4""	1	3.72, <i>m</i>	104.9	68.5
5""		3.63, <i>dd</i> , 2.29;13.003.36, <i>br d</i> , 13.00	162.4	66.1

Table 3
α -Glucosidase inhibitory activity for isolated compounds from ethyl acetate fraction of <i>B. pinnatum</i> leaves

Sample	IC ₅₀ (µg/mL)
3',4'-dimethoxy quercetin	103.2
Quercetin 3-O- α -L-rhamnoside (1)	83.83
Quercetin-3-O-a-L-arabinopyranosyl	110.52
$(1\rightarrow 2) \alpha$ -L-rhamnopyranoside (2)	
Quercetin (positive control)	5.67

References

1. Guo L.P., Jiang T.T.F., Lv Z.H. and Wang Y.H., Screening α glucosidase inhibitors from traditional Chinese drugs by capillary electrophoresis with electrophoretically mediated microanalysis, *Journal of Pharmaceutical and Biomedical Analysis*, **53**, 1250-1253 (**2010**)

2. Feng J., Yang X.W. and Wang R.F., Bio-assay guided isolation and identification of α -glucosidase inhibitors from the leaves of *Aquilaria sinensis*, *Phytochemistry*, **72**, 242-247 (**2011**)

3. Yang Z., Wang Y.C., Wang Y. and Zhang Y., Bioassay-guided screening and isolation of α -glucosidase and tyrosinase inhibitors from leaves *Morus alba*, *Food Chemistry*, **13**, 617-625 (**2012**)

4. Zhang L., Bai B., Liu X., Wang Y., Li M. and Zhao D., α -Glucosidase inhibitors from Chinese Yam (*Dioscorea opposita* Thunb.), *Food Chemistry*, **126**, 203-206 (**2011**)

5. Ye X.P., Song C.Q., Yuan P. and Mao R.G., α -Glucosidase and α -amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus, *Chinese Journal of Natural Medicines*, **8**(5), 0349-0352 (**2001**)

6. Ieyama T., Puteri M.D.P.T.G. and Kawabata J., α -Glucosidase inhibitors from the bulb of *Eleutherine americana*, *Food Chem.*, **128**, 308-311 (**2011**)

7. Lee S.S., Lin H.C. and Chen C.K., Acylated flavonol monorhamnosides, α-glucosidase inhibitors, from *Machilus philippinensis*, *Phytochemistry*, **69**, 2347-2353 (**2008**)

8. Yadav N.P. and Dixit V.K., Hepatoprotective activity of leaves of *Kalanchoe pinnata* Pers, *J. Ethnopharmacology*, **86**, 197-202 (2003)

9. Cruz E.A., Da-Silva S.A.G., Muzitano M.F., Silva P.M.R., Costa S.S. and Rossi-Bergmann B., Immunomodulatory pretreatment with *Kalanchoe pinnata* extract and its quercitrin flavonoid effectively protects mice against fatal anaphylactic shock, *International Immunopharmacology*, **8**, 1616-1621 (**2008**)

10. Supratman U., Fujita T., Akiyama K., Hayashi H., Murakami A., Sakai H., Koshimizu K. and Ohigashi H., Anti-tumor promoting activity of bufadienolides from *Kalanchoe pinnata* and *K. daigremontiana x tubiflora, Biosci. Biotechnol. Biochem.*, **65**, 947-949 (**2001**)

11. Muzitano M.F., Tinoco L.W., Guette C., Kaiser C.R., Rossi-Bergmann B. and Costa S.S., The antileishmanial activity assessment of unusual flavonoids from *Kalanchoe pinnata*, *Phytochemistry*, **67**, 2071-2077 (**2006**)

12. Darmawan A., Megawati and Fajriah S., 3',4'-Dimethoxy Quercetin, a flavonol compound isolated from *Kalanchoe pinnata*, *J. Applied Pharmaceutical Science*, **3(1)**, 088-090 (**2013**)

13. Lee D.S. and Lee S.H., Genistein, a soy isoflavone, is a potent α -glucosidase inhibitor, *FEBS Letters*, **501**, 84-86 (**2001**)

14. Peng Z.F., Strack D., Baumert A., Subramaniam R., Goh N.K., Chia T.F., Tan A.N. and Chia L.S., Antioxidant flavonoids from leaves of *Polygonum hydropiper* L., *Phytochemistry*, **62**, 219-228 (2003)

15. Zhong X.N., Otsuka H., Ide T., Hirata E., Takushi A. and Takeda Y., Three flavonol glycosides from leaves of *Myrsine* seguinii, *Phytochemistry*, **46**(5), 943-946 (**1997**)

16. Li Y.Q., Zhou F.C., Gao F., Bian J.S. and Shan F., Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α -glucosidase, *J. Agricultural & Food Chemistry*, **57**, 11463-11468 (**2009**).