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Abstract 
El Nino- Southern Oscillation (ENSO) is an interactive 

phenomenon between the ocean and atmosphere across 

the tropical Pacific region which results in changes in 

sea surface temperatures (SSTs). It occurs every 2 to 8 

years and has adverse effects on the climate across the 

globe. ENSO has large-scale social and economic 

impacts. It directly affects the infrastructure, health, 

agriculture, and trade and energy sectors. Hence, 

prediction of ENSO conditions is crucial to both the 

researchers and the general populaces. Therefore, a lot 

of research work has been done for its precise 

prediction. Artificial Neural Networks (ANNs) that are 

functionally based on the human brain have been 

popular and efficient in climate change studies 

recently.  

 

As ENSO has several nonlinear features and is a 

complex natural phenomenon with various salient 

features and factors contributing to it. Researchers 

have started using ANNs as an alternative to other 

traditional methods to model this event. In this study, 

the physics of ENSO and the substantial work done by 

researchers to predict the SST anomalies (one of the 

major factors in this event) using different artificial 

neural network techniques is studied in detail and the 

key findings are highlighted which further emphasizes 

the importance of artificial intelligence in the domain 

of climate change. 
 

Keywords: Artificial neural networks, El Nino Southern 

oscillation, Sea surface temperatures, Modeling, Nonlinear 
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Introduction 
El Nino Southern Oscillation (ENSO) occurs naturally and 

has devastating and appalling impacts socially, 

economically as well as environmentally. These climatic 

disturbances occurred in every 2 to 8 years. El Nino and La 

Nina are the 2 phases of ENSO. The former occurs when 

there is warming of ocean surface and the sea surface 

temperatures (SSTs) becomes higher than normal while the 

latter is just the reverse of El Nino phase which results when 

SSTs fall down from the average SSTs. The southern 

oscillation is a consistent periodic variation of atmospheric 

pressure across the equatorial Pacific Ocean and is an 

atmospheric component of ENSO. El Nino and the SST 

variations from normal surface temperatures are very closely 

linked.   

 

ENSO is certainly a predictable event but it is the degree of 

its precise prediction, which is of utmost importance to us. 

A lot of research work has been done in this field for its 

successful prediction. The interest in ENSO grew up a notch 

after a very high strong and heavily observed El Nino event 

was reported in 1982-83. It had cataclysmic effects in many 

South American countries, parts of Asia and Australia.10 The 

1982-83 El Nino certainly sparked an outburst in research 

interest. 

 

It was during the mid-1980s that prediction and seasonal 

experimental forecasting of ENSO gathered momentum. 

The prediction models could be classified into 3 types 

namely Statistical models, Coupled Physical models and 

Hybrid models.24,25 Barnston et al5 observed that models 

based on statistical analysis produced similar capabilities as 

compared to other models in predicting SST aberrations 

across the equatorial Pacific region. Most of these kind of 

models predicted results for 6 months in future and were 

mostly linear regression models which depended on 

operations (matrix) to improve the correlation of observed 

and forecasted data.4,17,21 On the other hand, ENSO certainly 

has features, which are nonlinear.  

 

During the El Nino and La Nina phases of ENSO, the SST 

and sea surface wind aberration patterns clearly do not match 

with one another32,65 and this observed non-linearity has 

been elucidated by An and Jin1. To understand and model 

these nonlinear irregularities of ENSO, artificial neural 

network (ANN) models which mirror the working of a 

human brain (biological neural network) and primitively 

from the domain of computational intelligence, have been 

used. These models were developed to perform nonlinear 

regression53,65 and nonlinear CC11,19.  

 

This study addresses the work done by researchers in the 

prediction of SST anomalies using artificial neural network 

models (Nonlinear models). This study also explores the 

recent developments that have taken place in the non-linear 

domain and deliberates future scopes and improvements.  

 

ENSO: The physics and indices involved 
ENSO- The processes concerned: The abnormal rise of the 

SSTs, which leads to the ENSO phenomenon, lasts from a 

few months up to a year or sometimes even more. It is 

represented by the following events: 
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1) The western tropical Pacific region and Indonesia is 

covered with severe high pressure and the eastern tropical 

Pacific region is covered by low air pressure which is known 

as the negative phase of the Southern Oscillation7,23. 

2) The Easterly winds known as trade winds get weakened 

across the equatorial Pacific, resulting in build-up of warm 

waters on the eastern part of the equatorial Pacific66. This is 

also called as the disruption of Walker Circulation.  

3) The equatorial regions to the east of 160ºE receive heavy 

precipitation16,44.  

4) The Hadley circulation is enhanced in the Pacific region46.  

5) The Aleutian low is dislodged southwards during the 

Northern Hemisphere winter season7,8,61.  

 

The oceanographic studies20,28,42,66 discovered that during a 

normal condition, low pressure exists over Darwin and a 

high pressure exists over Tahiti, which results in the air 

circulation from east to west. These winds are the trade 

winds which bring warmer surface waters towards the 

western side and because of which Australia and western 

Pacific get precipitation.  

 

However, when this pressure weakens, the trade winds are 

weakened and can no longer force the warmer surface waters 

towards the west. This causes severe drought conditions in 

Australia, while across the eastern part due to heavy 

precipitation, floods occur at the western beachfront of 

equatorial South America. It can be stated that the SSTs and 

atmospheric pressure highly relate to each other. The 

intensification and decline of Easterly trade winds are 

function of changes in the pressure tilt across the tropical 

Pacific.  

 

The ENSO observations emphasizes on Sea surface 

temperature anomalies (SSTA) in four different 

geographical locations of the equatorial Pacific. 

 

The ENSO indices: The monitoring of the tropical Pacific 

SST aberrations is done with the help of few indices 

averaged over a given region and are described below. The 

inconsistencies are generally estimated with respect to an 

average of thirty years.  

 

Niño 1+2 (0o-10o S, 90o W-80o W): It is the tiniest and the 

most eastern of the Niño SST regions. It is located at the 

beachfront South America. At this location, the nearby 

populaces first perceived El Niño. It shows the biggest 

deviation of all the other such indices.  

 

Niño 3 (5 o N-5 o S, 150 o W-90 o W): At one time, this 

location was considered a key location for observing and 

forecasting ENSO events, however later researchers 

discovered that the prime regions for coupled sea air 

communications for ENSO are located more towards the 

west57.  

 

Niño 3.4 (5 o N-5 o S, 170 o W-120 o W): It generally employs 

a 5-month running average. The two phases are identified 

when the SSTs in the region Niño 3.4 exceed by 0.4 0C for 

an El Nino event and are reduced by 0.4 0C for a La Nina 

event for a period of 6 months or more.  

 

Niño 4 (5 o N-5 o S, 160 o E-150 o W): This region records 

SST irregularities in the central Pacific. This area shows 

lesser change as compared to other mentioned Niño region. 

 

ONI (Oceanic Niño Index): It is also a key indicator to 

monitor these events. The ONI employs the data from Niño 

3.4 region. The ONI usually employs a 3-month running 

average and if the anomalies are to exceed by +0.5 0C or - 

0.5 0C for a period of 5 continuous months, then such an 

event can be termed as certain El Nino or La Nina.  

 

To describe the remarkable feature of every ENSO (both 

phases included) event, Trenberth et al58 presented the 

Trans-Niño Index (TNI).  They proposed that to minutely 

understand features of every El Niño or La Niña, SST 

irregularities between the Niño 1+2 and Niño 4 regions have 

to studied along with Niño 3.4 region.  

 

In this way, TNI measures the rise in SST irregularities 

between the central and eastern tropical Pacific. At the point 

when the SST angle plays a major role (Niño 4 region is 

characterized by positive anomalies and Niño 1+2 area by 

the negative anomalies), researchers have coined this 

occasion as a "central Pacific El Niño " or "El Niño Modoki."  

 

The difference between them is the fact that in El Niño 

Modoki, there is strong anomalous warming of the central 

tropical region in the Pacific Ocean. The cooling takes place 

at both eastern and western tropical regions of the Pacific 

Ocean. These regional gradients give result to 2 walker 

circulation cells as compared to one in case of El Niño.  

 

The El Niño Modoki is also characterized by a wet zone 

across the central Pacific. The locations of different Nino 

indices (regions) across the equatorial pacific sector are 

shown in fig. 1. 

 

ENSO Prediction: The Neural network models  
Artificial neural networks (ANNs) are the foundations of AI 

and are capable of solving complex tasks which are very 

difficult by human standards or traditional statistical 

methods. ANNs are based on the working of the human brain 

and the neurons and which are the functional units of the 

brain and serve as the basic units of an artificial neural 

network. 

 

These neurons function parallel to one other and are 

organized in layers. The first layer that serves as the input 

layer is fed the raw information, which is then processed by 

the subsequent layers and the final layers, produces the 

output. Interestingly, a neural network can adjust itself to the 

changes in the surroundings and therefore results in better 

learning of a system.
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Fig. 1: Locations of different Nino regions across the Pacific 

 

Mathematically the working a neuron can be explained with 

the help of the equations given below: 

 

𝑢𝑚 =  ∑ 𝑤𝑚𝑖
𝑛
𝑖=1 𝑥𝑖                       (1) 

and 

𝑦𝑚 = 𝜑(𝑢𝑚 + 𝑏𝑚)                       (2) 

 

where x1, x2,….., xi are the initial input signals; wm1, wm2,.…, 

wmi are the corresponding weights of neuron M; um is the 

linear combiner of the weights with their input signals; bm is 

the bias of the network; 𝜑(.) is known as the activation 

function and ym is the final output of the neuron, M. The bias 

is a constant that adjusts the final output um so that the overall 

model fits the given data.  

 

The function of the activation function is to analyze and 

decide when a neuron is to be initialized by adjusting the 

synaptic strengths corresponding to that particular the 

neuron and by adding the bias to it. The non-linearity is 

brought in the neuron with the introduction of activation 

function. The NNs can be broadly classified into three 

fundamental network architectures: 

 

1. Single-Layer Feedforward networks (Single-Layer 

Perceptron): It is the simplest type of NN architecture. The 

input layer of signal nodes projects the output layer of 

computation nodes. It is non-cyclic in nature. 

2. Multilayer Feedforward networks (Multi-Layer 

Perceptron): There is a presence of one or more layers of 

hidden neurons in this type of NN architectures. The hidden 

layers compute the weighted inputs and then convert them 

by employing suitable activation function to finally obtain 

the desired output. The number of hidden layers in the NN 

model largely depends on the complexity of the problem. 

The input layer is the first layer fed with input vectors which 

creates the input signals which are then applied to the second 

layer neurons which becomes the first hidden layer. The 

second layer output is used as an input for the third layer, 

and the process goes on in a similar way for the remainder 

of the network. 

3. Recurrent networks: These NN architectures are similar 

to feed forward networks, the contrasting feature being the 

presence of at least one feedback loop. Generally, there are 

two types of feedback, feedback generated from hidden 

neurons as well as from the output neurons and is moved 

backwards and self-feedback where the output of the neuron 

is brought back into its own input. 

 

The domains that employ utilize artificial neural networks 

(ANNs) are advanced and are spread continuously in the 

recent times as computer technology and artificial 

intelligence have developed tremendously. ANN as such has 

been widely employed and put in work by researchers taking 

in account of growing concerns of frequent El Nino Southern 

oscillation events and with it the related climatic 

abnormalities. The work of Tangang et al53 can be 

considered pivotal in this field. The SSTA in the tropical 

Pacific was predicted by using NN models in the Nino 3.4 

region. Empirical orthogonal function (EOF) analysis was 

used in this study.  

 

Wind stress data transformed using EOFs across the tropical 

Pacific (20°S-20°N, 120°E-70°W) for 4 seasons and the 

Nino 3.4 SSTA data was used as the inputs. For training the 

NN models, the data from the period of 1952-1981 was used 

and for forecast validation, data from the period 1982-1992 

was employed. A simple three-layered neural network model 

(feed forward) as the one shown in the fig. 2 was used. 

 

In the hidden layer, hyperbolic tangent activation function 

was employed and a linear transformation of the output was 

done. Extended empirical orthogonal functions (EEOF) 

were used to compress. The predictor field was compressed 

by extended empirical orthogonal functions (EEOF) which 

resulted in smaller NNs producing identical or 

comparatively better results than the larger NN models; the 

output of the network is given by: 

 

𝑧 = ∑ 𝑤̃𝑗𝑗  𝑦𝑗 + 𝑏, 

 

where yj is the outcome of the jth hidden neuron.
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Fig. 2: A 3-layer feed-forward NN model having an input layer, a hidden layer and the output layer 

 

𝑦𝑗 = 𝑡𝑎𝑛 ℎ ( ∑ 𝑤𝑖𝑗

𝑖

𝑥𝑖 + 𝑏𝑗  ) 

 

whereas the terms w, x and b bear the same descriptions as 

described earlier. The optimization or the network training 

was done using the back-propagation method48,50. The 

steepest descent algorithm was used in this study to 

minimize the cost function22 which was of the form as 

shown:12 

 

𝐶 =  
𝑎1

2
∑(𝑧 − 𝑧𝑎)2 + 𝑎2 ∑ 𝑤2 + 𝑎3  ∑ 𝑤̃2  

 

where C denotes the sum of squared error and the two terms 

on the left hand side are weight and weight adjusting terms 

respectively. This NN model attained forecasting 

capabilities similar to the other ENSO models of that time at 

6–month lead-time. The obtained individual forecasts were 

then compared with the ensemble forecasts, which were 

obtained by calculating the mean of six separate forecasts. 

For example, for the January-February- March (JFM) period 

of 1982 at 3-month time ahead, the ensemble forecasts were 

obtained through averaging of the particular forecasts of the 

same period at 3-month time ahead.  

 

A similar method was used to create ensemble forecasts for 

those at 4, 5, 6, 7, and 8-month leads. This averaging method 

increased the skills of mid-range periods like from 5-10 

months but it did prove to be a disadvantage for lesser or 

very shorter duration periods or periods larger than 1 year. 

The correlation of 0.66 and the root-mean-square error 

(rmse) of 0.83 for the individual forecasts was achieved at 6-

month lead. A better correlation of 0.71 and an rmse of 0.73 

were achieved by the ensemble forecasts. The results from 

the study clearly in fig. 3 show the effectiveness of NN 

models in forecasting of ENSO even at longer time durations 

(more than 6 months to a year). It was also found that the 

underlying relationship between Nino 3.4 SSTA and the 

wind stress became progressively nonlinear at these longer 

leads. The interpretation of NN outcomes was done in 

presence of certain theories e.g. the part played by the 

Rossby waves in sparking the commencement of an ENSO 

event and the part played by delayed-oscillator theory in the 

growth and ceasing of an ENSO event.  

 

Tangang et al53,54 did a sequential work. They created two 

types of NN models for forecasting the SST anomalies over 

standard equatorial Pacific regions namely Nino 3, 3.4, 3.5, 

4, P2, P4 and P5. The new region Nino 3.5 (120oW to 180o 

and 10oS to 5oN) was proposed by Trenberth and Hoar56. 

This region includes parts of the Nino 3 and Nino 4 regions 

and extended farther into the southern hemisphere.  

 

The first model used SLP field as the predictors and the other 

used wind stress field. The neural network model design is 

the same as given by Tangang et al.53 To reduce noisy data 

from those of the earlier models, ensemble averaging was 

done over 20 forecasts with randomly initialized weights. 

The west central equatorial region was the best forecasted 

but the eastern boundary regions not so well. The models 

with SLP gave better results. 9, 12 and 15 months ahead 

forecasted results gave correlational skills of 0.78, 0.80 and 

0.75 shown in fig. 4. The NN results were verified with 

samples that were not included in training of the network 

model. From these above-mentioned works, it can be 

concluded that NNs had an advantage over other traditional 

models when it comes to forecasting for longer durations in 

the future.  

 

The cause behind this would be the increase in non-linearity.  

Tangang et al55 used ANNs to the three regions namely Nino 

3, Nino 3.5 and Nino 4 which independently represented the 

different parts the equatorial Pacific Ocean (central, eastern 

and western) respectively as compared to employing NNs to 

only one region mentioned in the previous work. The SST 

data sets of Tangang et al53 were employed in this study as 
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well. The extended empirical orthogonal functions (EEOF) 

of SLP field was used which helped in reducing the size of 

NNs. The introduction of new regions showed that the 

surface wind and sea level pressure anomalies were 

responsible for the major changes in SST with respect to 

ENSO, originating from the region near the equator in Indian 

Ocean and moved slowly towards the Pacific region in the 

east3.  

 

 
Fig. 3: NN forecasts of Standardized SST anomalies at future leads of 3, 6, 9 and 12 months53 

 

 
Fig. 4: The NN forecasted Standardized SST anomalies at time ahead of 3, 6, 9, and 12 months with the correlation 

coefficient (r) for the period of 1983-92 54
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The NN model was similar to the one used by Tangang et 

al.53 The Nino 4 was the best predicted region with a good 

competence of 1-year time ahead forecast. The forecast 

comparison of Niño 4 region using NNs with the observed 

irregularities is shown in the figure 4 with being the 

statistical parameter of measure being the correlation 

coefficient (r). Spectral analysis was applied to NNs to 

obtain crucial input features and nonlinear characteristics.  

 

The results showed greater nonlinear behavior with increase 

in lead time and hence it can be stated that the relation 

between the SST and the atmospheric field became more and 

more nonlinear as well with increase in time duration. The 

regions to the east of Nino 3.5 and Nino 4 highlighted this 

trait more and more.  

 

Tang et al52 performed a performance and results oriented 

comparative study between neural network (NN), linear 

regression (LR) and canonical correlational models (CCA). 

The sea level pressure (SLP) data63 and the sea surface 

temperature (SST) data across the tropical Pacific were used 

in this study.47,50 EOF was used for reducing the data size. 

The overall forecasting skills of the three models were 

compared along with the persistence are shown in fig. 5.  

 

The similar characteristic of NN was once again highlighted 

that it predicted better results at longer durations (6 months 

and longer). Despite its non-linearity, NN did not provide 

any improvement over LR and CCA models. It was then 

concluded that this lack of improvement may be due to 

several contributing factors, one being the tropical Pacific 

region which is mostly linear and can be a key factor for the 

so obtained NN results.  

Penland and Sardeshmukh41  observed in their study that 

SST data from the tropical Pacific are comparable to a linear 

model for a time ahead of up to a year. It was also suggested 

that the data records were either very insufficient or may be 

were not large enough. NNs have better generalizing 

capability but they also require substantial amount of data 

for proper learning of a system. NNs require data of better 

quality and less noise. One more possibility was finding a 

better way to develop NN models. The framing of a sound 

NN model requires more analyzing than creating a LR or a 

CCA model. The neural networks till the early 2000s were 

relatively new method in climate change studies.  

 

Baawain et al2 developed ANN models to forecast the start 

of an ENSO event with the help of two indices namely, SOI 

and Niño3, to simulate ENSO. These indices were used one 

at a time. Two NN models were used for forecasting ENSO 

using monthly averaged data. The first NN model used SOI 

as the output to predict ENSO up to 12 months ahead. The 

NN inputs were air speed and temperature parameters along 

with SST anomalies for the 2 selected locations in the Pacific 

Ocean.  

 

The other NN model used Niño3 as the indicator 

representing SST anomalies as an output for four locations 

having the same previous inputs in the Pacific Ocean. For 

the above-mentioned NN model monthly average data, range 

from a period of 1994 to 2004 was used. The NN models 

were multi linear fee forward NNs which were trained using 

the error back propagation algorithm. The training and 

testing data were in the ration of 3 to 1. Log activation 

function and a linear scaling function45 were applied to the 

input and output layers of the model.  

 

 
Fig. 5: The prediction capabilities of the four different models and persistence for the 4 regions  

at different lead times52 

https://journals.ametsoc.org/doi/10.1175/1520-0442%282000%29013%3C0287%3ASCBNNA%3E2.0.CO%3B2
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The optimization of the network was by varying the 

activation function in the hidden layers as well as the number 

of iterations. The models did fare well in prediction of onset 

of ENSO up to 12 months in advance. For SOI and Niño3, 

coefficient of correlation values of 0.7 and 0.8 were obtained 

for 12-month time ahead forecasting. These 2 NN models 

were then compared among themselves and were found to 

be hugely consistent with 75% compliance in their 

prediction ability. Fig. 6 shows the actual observed and 

predicted indicators, SOI and Niño 3 respectively while the 

table 1 shows the various corresponding NN architectures 

involved in developing the models.  

 

Wu et al65 introduced a neural network that was feed forward 

in nature to predicting SST aberrations in the Pacific Ocean. 

They used SST and SLP anomalies as the inputs to their 

model to forecast five leading principal SST components at 

lead times from a period of 3 to 15 months. The principal 

component mentioned in this study is nothing but EOF of the 

SSTs. It is done to reduce the data set to manageable size of 

prominent modes18 and is linearly uncorrelated. They made 

a comparison with LR models and observed that NN models 

showed higher correlational capabilities and considerable 

low rmse over most study areas, especially across eastern 

equatorial Pacific and the western Pacific.  

 

The seasonal and decadal aberrations were also examined in 

this study. A standard feed forward NN built this research 

using Bayesian regularization9. For training of the NN model 

Bayesian regularization was employed where the 

optimization of weight parameter was done using a Bayesian 

approach26.  

 

The data sets were then divided into 2 parts, 85 % of the data 

set was used in training and remaining for an over fitting test. 

The training set of 85 % was used to train both NN model 

and a LR model. The NN model was only accepted if it 

showed greater correlational skills and lesser MSE than the 

LR model.

 

Table 1 

The NN architectures used in prediction of SOI and Niño32 
 

SST Forecast in 

months 

Correlation  

Tripathi et 

al 

Correlation coefficients for the different sites 

Site A Site B Site C Site D Site E Site F 

1 0.97 0.99 0.96 0.90 0.97 0.99 0.96 

2 0.95 0.96 0.94 0.80 0.91 0.98 0.88 

3 0.59 0.96 0.94 0.79 0.92 0.98 0.89 

4 0.76 0.95 0.94 0.82 0.91 0.98 0.89 

5 0.90 0.95 0.94 0.85 0.92 0.98 0.90 

6 0.92 0.96 0.94 0.85 0.91 0.98 0.87 

7 0.77 0.96 0.94 0.83 0.91 0.98 0.87 

8 0.89 0.96 0.94 0.83 0.91 0.98 0.87 

9 0.87 0.96 0.95 0.81 0.91 0.98 0.87 

10 0.69 0.95 0.94 0.83 0.91 0.98 0.88 

11 0.76 0.95 0.94 0.82 0.92 0.98 0.88 

12 0.99 0.96 0.94 0.81 0.92 0.98 0.88 

 

 
Fig. 6: Actual and predicted SOI and Niño3 respectively with no lead time2 
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This whole process was continued till 30 NN models showed 

the above mentioned characteristic. The final forecast was 

made from the average of predictions of these 30 NN 

models. As there were 30 models and 10 portions were kept 

for validation purposes, a total of 300 such models were used 

for the entire prediction. This process was continued until all 

SST PCs at 3, 6, 9, 12 and 15 months were predicted. 

Moreover, 8 different iterations for each such model were 

done as the number of hidden neurons varied from 1 to 8.  

 

As it is evident from the previous studies that the non-

linearity between the observed and forecasted varies or 

grows as the prediction duration increases, the nonlinear 

(NL) models showed better forecasting skills than their 

counterparts over the far western Pacific (west of 155◦E) and 

the eastern equatorial Pacific. Their correlation skills were 

improved by 0.10-0.14.  It can be concluded that nonlinear 

models have advantage over LR models at longer lead-time 

i.e. greater than 6 months and during the boreal summer and 

fall seasons. Fig. 7 compares the skills between the two 

models at different lead time. 

 

Tripathi et al59 employed neural networks across the Indian 

Ocean (27o to 35oS and 96o to 104o E) to predict SST 

anomalies. In the study, twelve NNs were created for every 

month in a year and the network training was performed on 

the mean values across the region. A feed forward NN 

combined with logistic activation function was employed in 

the study. The Reynolds’ reconstructed SST data set ranging 

from a period of 1950 to 2001 was used which consisted of 

624 data points i.e. for the 52 years for every 12 months. 

From the 624 data points, 12 series of corresponding 52 

points were obtained in a way that each series served as the 

data set of a particular month.  

Hence, separate time series was formulated for each and 

every month. Then the average aberrations for each month 

were calculated. The entire time series data set of 52 months 

were then into three parts, namely training, testing and 

validation. For every monthly SST anomaly prediction, a 

separate NN structure was created as creating a single ANN 

model to predict the entire anomalies for all the 12 months 

would increases the number of free parameters enormously 

and increase the complexity as well.   

 

The output obtained from each NN was the predicted 

aberrations for the corresponding month. The NN models 

therefore had one neuron as their outputs. The number of 

neurons would vary depending upon the number of 

predictors selected for example from one (for December) to 

four (for June). For achieving consistency, lag correction 

was also done. The predictor months were chosen on the 

basis of their correlational skills. If a correlational 

coefficient of 0.5 was achieved, then that month was selected 

as predictor otherwise not.  

 

The number of predictors at max was kept at four. It was 

observed that the best correlation was achieved with past 

data of the same region and not with the bordering grid 

points. The cross validation of the network was given more 

importance as compared to the other studies mentioned in 

this study. The training of the data sets was stopped after 

modification of free parameters for every 10 cycles. Then 

the performance of the NN was tested and training was 

resumed. With decline in performance the training was 

stopped as it meant that the model was over fitting the data 

sets. The results obtained were then compared with a Linear 

Multivariate Regression (LMR) model.  

 

 
Fig. 7:  Skill comparison of NN model and LR model in predicting the 5 principal SST components. The error bar 

shows ±1 standard error of the prediction capability from the 30-member NNs average65 
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It was observed that LMR model failed to make any forecast 

when there was reliance of present anomalies on the past 

anomalies showing nonlinear behavior. During linear 

dependency, NN and LMR models showed similar 

forecasting skills. NN models showed better trend predicting 

ability and their corresponding forecasts were better than the 

average forecast for every month. From the fig. 8 above, this 

behavior can be understood properly. For the months of 

Sept, Oct and Nov, it is evident from the figure that both 

LMR and NN models show lesser than normal forecasting 

skills, which is due to the fact that there is a linear 

relationship between past and present aberrations. This 

brings us to another important aspect of ANNs that they are 

better suited for nonlinearity.   

 

Two separate nonlinear methods, support vector regression 

(SVR) and Bayesian NN (BNN) were used by Martinez and 

Heish30 alongside a LR model to forecast tropical Pacific 

SSTs. They forecasted at lead times of 3 to 15 months. The 

predictors were SLPs and SSTs. They studied 2 data sets 

1950-2005 and from 1980 -2005 with the latter having 

another component known as the warm water volume 

(WWV), which is volume integral of water above the 200 

isotherm between 5◦N–5◦S, 120◦E–80◦W31. The sole reason 

of using two data sets of SST and SLP data was prior to 

1980, the data set did not contain WWV which was an extra 

predictor used in this study.  

 

The LR model was achieving similar sort of results as well. 

SVR can be termed as a supervised learning model35 which 

is associated with learning algorithms that helps in 

regression analysis. The SVR had two fundamental 

advantages over the BNN model i.e. it did not have multiple 

minima in optimization process and a robust error norm to 

outliers in the data. But then again in spite of these 

advantages, it did not improve on the results obtained by 

BNN significantly. The reason would be that BNN uses 

probability distribution over the network weights. It can 

naturally address the issues of over fitting and model 

selection sometimes without even needing a separate cross 

validation set.43 The data was then divided into 10 parts and 

9 parts were used to construct the model and the remaining 

one was used for testing. The 9 parts were further divided 

into 2 parts for training (two thirds) and cross validation (one 

third).  

 

The numbers of hidden layers were randomly picked for 

which the error function had to be optimized. Since the error 

function contained many local minimum, it led to many 

possible different models. The model with least Mean 

Square Error (MSE) was kept. SVR provided a good solution 

in this matter as it avoids multiple local minima and uses a 

robust error norm, 

 

𝐸∈(𝑦 − 𝑦′) = {
0, 𝑖𝑓 |𝑦 − 𝑦′| <∈,

|𝑦 − 𝑦′|−∈ ,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

whereas y and y’ are the observed and predicted outputs and 

for outliers. From the fig. 9 and 10, it can be seen that the 

nonlinear models have performed better than the LR models 

and evidently the models with WWV predictor 

comparatively produced even better skills. It was hence 

observed that predictors such as WWV can definitely 

characterize an ENSO event. Its inclusion along with other 

traditional or common predictors increased the prediction 

capability of the model. 

 

 
Fig. 8: Predictive skills comparison between NN and LR models for the months of (A) September, (B) October,  

(C) and (D) November59 
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Patil et al37 exhibited the advantage of non-linear 

autoregressive (NAR) neural network models to forecast 

SST aberrations on a monthly scale for one to twelve months 

in the future at six different locations based on 61-year data 

records. The data records ranged from Jan 1945 to Dec 2005. 

Thus for the 61 years, there were 732 values (61 years and 

their corresponding 12 months). The initial study was done 

with a traditional feed forward back propagation NN 

(FFBP)68. To improve on its skills another network NAR 

network was employed.  

 

The study regions were coded as AS (19oN - 20oN and 68oE), 

BOB (18oN - 19oN and 90oE), EEIO (1oS - 1oN and 90oE), 

SOUTHIO (9oS -11oS and 95oE - 98oE), THERMO (16oS - 

14oS and 56oE - 58oE), and WEIO (1oS - 1oN and 65oE). 

These are all located in the north Indian Ocean. NAR is a 

special kind of recurrent network having feedback 

protrusions shown in the figure 11. It uses a static back 

propagation while training.  

 

The training was done using Levenberg-Marquardt 

algorithm6. The feed forward NN includes sigmoid 

activation function in the hidden layers. The output layer of 

neurons is transformed using a linear activation function. 

The number of input neurons was kept at 24 and the output 

of the network was one. 

 

The NAR network produced good predictions over the 

different locations used in this study and was superior to the 

results obtained by FFBP NN architecture. The statistical 

parameters like correlation coefficients (CC), MSE, mean 

absolute error (MAE) and Nash Sutcliffe error (NSE) were 

used. The NAR network attained correlation above 0.90 

between predicted and observed values. MSE and MAE 

were observed to be less than 0.23∘C and 0.38∘C respectively 

and NSE coefficient of the order of 80%. The results of this 

study and a comparison with a previous study are shown in 

the table 2. 

 

Mohongo and Deo29 forecasted SST anomalies in the region 

around Indian Ocean using NAR network using exogenous 

input (NARX) on a monthly and seasonal scale. This model 

is based on the principle of forecasting based on time 

series.67 This present study employs a multi layered NARX 

network. The governing equation for the NARX model is 

given below, the model can predict the series y(t) based on 

the past values, d of time series y(t) and x(t) : 

 

y(t) = f((x)(t-1),…..,x(t-d), y(t-1) ,…y(t-d)) 

 

The prior values of x(t) and y(t) time series are stored by the 

past values d given in the above equation which are called 

tapped delay lines (TDLs). The input neurons were set at 

four which was equal to the number of predictors. For 

example, the four predictors for the month of Feb of a certain 

year would be Jan of the same year and Dec, Nov and Oct of 

last year. The study locations were coded EAF, a region 

located along the eastern African shore (6-7oS, 39-40oE) and 

EQT, a location that decisively lied around Indian Ocean 

Dipole’s western pole (0-1oS, 59-60oE). The data ranged for 

a period of 142 years from Jan 1870 to Dec 2011. Hence, a 

total of 1704 data points were obtained (142 years and the 

corresponding 12 months).  

 

 
Fig. 9: RMSE values obtained by the different models during the predictions for the Nino 4, Nino 3.4, Nino 3, and 

Nino 1 + 2 regions30 
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Fig. 10: Correlation values obtained by the different models during the predictions for the Nino 4, Nino 3.4, Nino 3, 

and Nino 1 + 2 regions30 

 

 
Fig. 11: NAR architecture for SST prediction37 

 

Table 2 

Skill comparison in terms of Correlation coefficient at different locations (CC)37 
 

Lead time 

(month) 

1 2 3 4 5 6 7 8 9 10 11 12 

Number of hidden 

Neurons (SOI) 

9 4 12 14 16 4 12 10 10 6 6 16 

Number of hidden 

Neurons (Niño3) 

12 12 16 5 6 6 13 15 8 7 5 16 

Hidden layer 

activation function 

(SOI) 

Log tanh Log Log Log tanh Gaussian Gaussian Gauss

ian 

Gaus

sian 

Gaussian Log 

Hidden layer 

activation function 

(Niño3) 

Log Log Log tanh Gaussian Gaussian Gaussian Gaussian Gauss

ian 

Gaus

sian 

tanh Log 

Number of epochs 

(SOI) 

3100 500 15000 4250 6600 2500 775 460 500 575 875 426

0 

Number of epochs 

(Niño3) 

1200 1500 6400 300 115 125 275 280 225 135 530 160 
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To achieve necessary consistency, the normalization scheme 

of Tripathi et al59 was employed in this study and the 

obtained SST aberrations were mapped onto the range 0.2 -

0.8. This process is supported by the works of Maier and 

Dandy27.  The results of this model were compared with 

three other NN namely, Feed forward NN, Radial Basis 

function NN (RBFNN) and Generalized Regression NN 

(GRNN) and also with a linear system, the Autoregressive 

Integrated Moving Average with Exogenous Input 

(ARIMAX) model. The architecture RBF NN is shown in 

fig. 12. It is a three layered NN.  The first layer compiles all 

the input parameters and hence requires more neurons than 

a standard feed forward NN.  

 

The hidden layer employs RBFS as their activation function. 

They perform the non-linear transformations of the inputs 

and they have only one layer of hidden neurons. Unlike 

FFNN and GRNN, RBFNN involves an unsupervised 

training component.13  

 

A GRNN (Fig.13) is a variation of RBFNN. For every 

epoch, one hidden neuron is centered and these units are 

called kernels. These are nothing but Gaussian functions. 

The output, which is a special linear layer, is then obtained 

in a slightly different manner as compared to other NN 

models60. These minute changes improve the local 

approximation capability of the neural network. Eight 

different performance evaluators were used to assess the 

skill of the models and are shown in the table 3. The testing 

period of the models ranged from 1981 to 2010. From the 

table above, it was observed that NARX has outperformed 

other NN models and ARIMAX. Therefore, it can be stated 

that it NARX model held good for both monthly and 

seasonal predictions.  

 

 
Fig. 12: The architecture of a standard Radial Basis function NN29 

 

 
Fig. 13: Diagrammatic representation of a typical Generalized Regression NN29 

 

Table 3 

kill comparison of the ANNs and ARIMAX model using various statistical performance indicators on the average 

monthly and seasonal SST anomalies respectively during the testing period of 1981-201029 
 

 MODEL R 

 

r2 

 

CE 

 

MaxAE 

(oC) 

SDD 

(oC) 

RMSE 

(oC) 

SDE 

(oC) 

MAE 

(oC) 

MSRE 

(oC) 

MAPE 

(oC) 

M
O

N
T

H
L

Y
 NARX 0.90 0.81 0.79 0.30 0.27 0.12 0.12 0.10 3.33 127.13 

FFNN 0.82 0.68 0.63 0.41 0.27 0.16 0.16 0.13 14.36 193.74 

RBFNN 0.80 0.64 0.60 0.46 0.27 0.17 0.17 0.13 75.05 194.21 

GRNN 0.80 0.64 0.60 0.46 0.27 0.17 0.17 0.13 81.89 197.34 

ARIMAX 0.80 0.64 0.59 0.45 0.27 0.17 0.17 0.14 50.26 185.40 

S
E

A
S

O
N

A

L
 

NARX 0.98 0.95 0.95 0.13 0.25 0.05 0.05 0.04 1.42 60.36 

FFNN 0.97 0.93 0.93 0.19 0.25 0.07 0.07 0.05 2.68 71.64 

RBFNN 0.96 0.92 0.90 0.19 0.25 0.08 0.07 0.07 6.52 92.43 

GRNN 0.96 0.92 0.91 0.20 0.25 0.08 0.07 0.06 6.78 95.60 

ARIMAX 0.96 0.93 0.91 0.19 0.25 0.07 0.07 0.06 5.09 90.31 
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Fig. 14: Functioning of the Wavelet Neural Network38 

 

Patil et al38 introduced wavelet neural network to forecast 

SST anomalies. The study was carried out to predict daily, 

monthly and seasonal SST anomalies at different locations 

in the Indian Ocean region. An error time series was 

generated by calculating the variation between obtained and 

observed SST anomalies and subsequent time ahead errors 

were predicted. This predicted error was then introduced to 

the numerical estimate and SST aberrations were calculated 

at 5 times ahead in future. The performance was assessed 

using various statistical performance indicators.  WNN is a 

hybrid network in which the inputs have to be preprocessed 

using wavelet transform.  

 

Deka et al14 and Dixit et al15 highlighted various applications 

of WNN and Shoaib et al49 used these NNs for run off 

predictions. The pre-processing involves removal of 

unwanted singnals with the help of the filters (high and low 

pass) and then feeding the broken down components into the 

network as inputs.  

 

Wavelet transform (WT) is a cyclic function for breaking 

down the series of data as shown in fig. 14. It segregates 

important features (useful data) of a series from its 

surroundings. The advantage is that it helps in retaining time 

dependent information. The filtering depends on the width 

of the WT which can be adjusted for analyzing low 

frequency data. These transforms are created from a mother 

wavelet 𝜑 by either decreasing or increasing the scale 

parameter s or by changing the form or position using 

translation parameter u. These two parameters actuate the 

resolution or width of filtered part. The mother wavelet 𝜑 (x) 

is given by: 

 

𝜑𝑠,𝑢(𝑥) =
1

√𝑠
𝜑

(𝑥 − 𝑢)

𝑠
 

 

where 𝜑s, u(x) is a function of translation parameter, u and 

scale parameter S are given by: 

 

𝑆 = (𝑥1𝑤1 + 𝑥2𝑤2 + ⋯ ) +  ∅, 

 

where x, w and ∅ represent the input, weight and bias 

respectively. The mother wavelet helps in mining hidden 

information in the signal through compression known as 

high pass and helps in approximating information through 

dilation known as low pass. These 2 phases are analyzed 

separately. These decompositions are again filtered through 

various levels until the network achieves desired results.  

 

In this work, the wavelet defined above is itself used as an 

activation function. The transformation was achieved during 

the training of the model as the test data was not included 

during the for actual application. The Discrete Wavelength 

Transform (DWT) decomposes the initial signals up to three 

levels of sub signals and thus three detail signals and one 

approximate signal are acquired.  

 

This study was performed with seven different WTs namely 

Haar wavelet, Symlet wavelet, Daubechies wavelet, Coiflet 

wavelet and Meyer wavelet with discrete approximation34. 

The study area locations were the same as in Patil et al.37 It 

was observed that Meyer wavelet with discrete 

approximation based on a particular mother WT showed 

better results than the other wavelets. The NAR network was 

then set for the final computation (WNN being a hybrid 

network).  

 

The data set was divided into parts for training and testing 

(70:30). Daily, weekly and monthly prediction of SST 

anomalies was made. At every time scale, SST anomalies 

were forecasted over five lead times ahead. The results 

obtained by the seven WTs were assessed using various 

statistical indicators of r, RMSE, and MAE. The results 

obtained by the seven WTs at site AS in terms of r and MAE 

are given in the fig. 15. The concept of combining neural and 

numerical methods showed in this work resulted in precise 

daily, weekly and monthly SST predictions over five lead 

times ahead at the selected sites. 

 

Patil et al38,39 and compared in situ instrumentally observed 

data and tested the results at various sites in the Indian 

Ocean. A numerical method was employed to investigate the 

precision of location specific information with in situ data 

records. Then NNs were used to predict SST anomalies a 

few times ahead in future using reanalysis data. Reanalysis, 

numerical, and in situ SST data were used in this study.   
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This observational data ranged from a period of Jan 2002 to 

June 2015, spanning around 13.5 years. The Regional Ocean 

Modeling System (ROMS) which supplied the numerical 

observations of daily SSTs, is an equation based climatic 

ocean model employed for various kind of coastal 

operations33,62. These observations ranged from January 

2013 to May 2015 for a period of 29 months. Based on the 

availability of the data, 6 locations were chosen. These sites 

were located across the Indian Ocean.  

 

The period from 10 Dec, 2014 to May 27, 2015 was used for 

testing to assess the precision of such numerical model over 

a lead time of 5 days in future. This constituted 20% of the 

total data records. The statistical parameter r was high and 

proved to be a good prediction but RMSE and MSE were not 

as low as expected and hence, it left scope for further 

improvements.  

 

Therefore, WNNs were employed at these 6 locations to 

predict daily values of SST 5 days ahead in time. The WNN 

was trained by NOAA OI version 2 reanalysis data and the 

testing was done as per the observations made by buoys 

under RAMA project. A comparison study was performed to 

assess the results obtained by WNN. The comparisons were 

made with a standard three-layered FFBP neural network 

and with a persistent model (PER). The PER model at every 

next step takes the predicted value equivalent to the present 

value i.e. SST (t+Δt) =SST(t) where the present surface 

temperature value is SST (t) and SST (t+Δt) is the future 

value at (t+Δt).  

 

The variations in the temperatures were found to be very less 

in comparison to originally observed values. For building the 

model the average SST anomalies were favored and not their 

absolute values. As a result, the re-analysis data were 

converted into abnormalities by subtracting the calculated 

average values from their absolute values. The 

decomposition of abnormalities at every site was achieved 

with a wavelet transform at three levels to produce detailed 

and approximate components.  

 

 
Fig. 15: Performance of the 7 WTs at site AS (19N to 20N and 68E) in terms of correlation coefficient (r) and MAE.38 

 

 

 
Fig. 16: Skill comparison between WNN, ANN, PER and numerical ROMS based SST prediction in terms of r, MAE 

and RMSE at site L4 (time lead of 5 days in future).39 
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These filtered components were then fed to NN for training 

to produce time ahead forecasting of SSTA. The ANN part 

of this WNN is similar to the architecture of NN used by the 

authors. The skill comparison between the different models 

was further analyzed in detail with the help of statistical 

performance measures namely r, RMSE and MAE. Figure 

16 highlights the capabilities of the different models used in 

this study at location L4 over the time horizon of 5 days. The 

predictions at other sites presented identical results. 

 

Conclusion and Discussion 
ENSO is a natural climate phenomenon which has impacts 

globally and occurs regularly. It has caused droughts, floods, 

wildfires, and dust and snow storms. It has resulted in huge 

losses in terms of lives and economy of many countries 

which are directly affected by this event. ENSO occurs every 

2 to 8 years; hence its precise prediction becomes very 

important. As discussed in the study earlier, ENSO has 

several nonlinear features which make it very difficult to 

predict with high degree of accuracy. Over the years, 

researchers and government bodies have toiled a lot to 

accumulate and analyze data concerning this climatic event.  

 

Artificial Neural Networks (ANNs) have proven to a big 

help in analyzing and prediction of ENSO. As ANNs are 

highly nonlinear and the non-linearity is spread throughout 

the network, it comparatively gives better results than other 

traditional methods or models. As the computation in ANNs 

is very robust, the decline in performance is not sudden. 

With adequate amount of data, ANNs shows good 

generalization capacity.  

 

The works of various researchers mentioned in the study 

clearly show viability and relevance of NNs in precise 

prediction of ENSO. NNs along with its advantages have 

certain disadvantages as well.  A network that is smaller than 

required does not learn the data samples properly and larger 

than required mostly over fits the data. There is no fixed 

method to attain compatibility; it requires great deal of trials 

and analyzing of the results. Much emphasis has to be given 

in pre-processing of the data before it is fed into the network 

which reduces the risk of learning undesirable noisy 

features. The results of all the mentioned works showed the 

capability of NNs to predict SSTA with lesser errors as 

compared to the other standard methods (mostly numerical 

ones).  

 

Most of the above-mentioned studies are location specific 

and it can be aforementioned that ANNs do not have the 

capability to include space and time variability of SST 

together for any specified area. In spite of these few 

disadvantages ANNs have proven to be very successful 

among the researchers in climate change studies due to the 

fact that they provide uniformity in data processing. They 

employ similar notations in all domains of application which 

makes it straight forward and more accessible to the research 

community.  

 

Conclusion 
For monitoring specific locations to predict the onset of 

ENSO events, NNs are much more suited and preferred to 

other techniques. ANNs provided better forecasts at longer 

time leads and with new upcoming models like WNN which 

considers both physics based and data driven methods 

together in prediction of SST anomalies. It can be stated that 

ANNs are certainly very efficient. They can certainly adapt 

and learn unknown and uncertain systems with ENSO being 

one of them. 
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