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Abstract 
This research aims to assess and compare Frequency 

Ratio, Weighting Factor, Weight of Evidence and 

Logistic Regression models for landslide susceptibility 

mapping using Geographic Information Systems and 

Remote Sensing data in the Ourika watershed, 

Morocco. A set of 100 landslides were identified and 

mapped by evaluating observations from satellite 

images (Google Earth images) and fieldwork 

undertaken from 2010 to 2018. The landslide inventory 

data was arbitrarily divided into two groups for 

training (75%) and validation (25%). Thirteen 

landslide conditioning factors were selected for 

landslide susceptibility modelling, based on 

multicollinearity analyses and the information gain 

method. Validation of the results is based on statistical 

rules for the Spatial Effective Method, Statistical 

Measures and Receiver Operating Characteristics 

Curve (ROC).  

 

The validation results show that all four models exhibit 

reasonably good performance and that the Logistic 

Regression model shows the most stable and judicious 

results for landslide susceptibility mapping in the study 

area. In regards to conditioning factors contribution to 

landslides, different methods show that topographic 

factors had the most impact on landslides occurrence 

in the study area. 
 

Keywords: Landslide susceptibility, Statistical Models, 

Ourika watershed, Statistical Measures. 

 

Introduction 
Landslides represent mass movements of the land surface 

and represent dangerous phenomena affecting life, property 

and environmental degradation worldwide, particularly in 

mountain areas4,8,13,33,29. Landslides are considered as one of 

the most common natural hazards because they influence 

settlements and engineered structures around the world25.  

 

In terms of risk to property and persons, landslides rank 

alongside other natural disasters such as earthquakes, floods 

and storms. In order to reduce the damage caused by 

landslides, we should first determine the affected areas and 

then evaluate the probability of landslide occurrence.  

 

Natural hazard mapping identifies the previous occurrence 

of natural events (such as landslides, floods, earthquakes and 

volcanic eruptions) and includes information about possible 

future occurrences47. During recent decades, progress in 

Geographical Information Systems (GIS) and remote 

sensing techniques has facilitated landslide susceptibility 

and hazard mapping25,26.  

 

In the literature, some researchers have cited several 

methods for mapping and assessing landslide hazards26, 34. 

The most used methods in landslide susceptibility modelling 

can be grouped into three approaches: qualitative factor 

overlay, statistical models and geotechnical process 

models14.  

 

In addition, many researchers have chosen statistical 

methods, the most used being: Frequency Ratio 

Model4,8,29,49, Information Value Model and Statistical Index 

Method4,36, Weight of Evidence Model4,21,22,40,48, 

Multivariate Logistic Regression Model4,34,48, Bivariate 

Statistical Analysis (BS)48, Fuzzy Logic Method30,39 and 

Artificial Neural Network Method6,9,12,41. 

 

Recently, numerous innovative approaches and advanced 

machine learning models are being applied to susceptibility 

assessment, such as logistic model tree (LMT), random 

forest (RF) and classification and regression tree31. 

Moreover, several hybrid methods have shown good results 

in the prediction of landslides in several regions of the 

world15. Hence, it is very important to examine and compare 

machine learning methods and statistical methods to reach 

judicious conclusions for landslide susceptibility 

assessment.  

 

Accordingly, this study proposes to evaluate and compare 

the performance of several statistical methods including the 

Frequency Ratio Model, Weighting Factor Method, Weight 

of Evidence Model and a Machine Learning algorithm that 

is Logistic Regression model, for the spatial prediction of 

landslides in the Ourika watershed, Hight Atlas, Morocco. 

Thus, thirteen landslide conditioning factors were 

considered in this study and the calculation and modeling 

were performed in a GIS environment. The results were 
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validated via the area under the receiver operating 

characteristic (ROC) statistical measures and statistical rules 

for the spatial effective method.  

 

The contribution of this study can be summarized in three 

main points:  

 

(1) The Frequency Ratio (FR), Weighting Factor (WF), 

Weight of Evidence (WOE) and Logistic Regression (LR) 

models were applied and their results were compared and 

validated by three methods, which are the area under the 

receiver operating characteristic (ROC) statistical measures 

and statistical rules for the spatial effective method.  

(2) IG method was applied to assess and choose the most 

important conditioning factors for landslide modeling and to 

compare the importance of topographic, geological, 

hydrological, land cover, anthropogenic and climatic factors 

in the genesis of landslides.  

(3) The performance of methods and models to predict 

landslides should be well assessed in a complex area 

characterized by several types of landslides: rotational and 

translational landslides, block slide, rockfall and rock 

avalanche. To achieve this objective, we took care that the 

different types of landslides will be represented in the 

inventory data. 

 

In Morocco, the areas threatened by landslide hazards are 

mountainous regions, particularly the Rif mountains and the 

Atlas chain21,22,35. Furthermore, several studies into 

landslide assessment using statistical methods have been 

completed in recent years, the majority being located in the 

Rif mountains1,21,22. For our project, the study area is the 

Ourika watershed, which is a part of The Marrakech High 

Atlas (MHA). The MHA is the most prominent topographic 

feature in North Africa (Toubkal summit is at ca. 4167 m) 

and it is located in an active, compressional setting24,38,46. 

The MHA generally and the Ourika watershed especially, 

are the seats of several natural phenomena such as 

devastating floods and landslides3,19,20,45. 

 

In the same way, on the night of July 24 to 25, 2020, high-

intensity rainfall triggered a rock collapse in a valley in the 

High Atlas of Marrakech located about a few dozen 

kilometers from the Ourika watershed in the same 

geological, geomorphological and climatic context. The 

damage was severe and 15 people was killed.  Hence, it is 

essential to evaluate assess susceptible areas to landslides 

and to and reduce the risk to property and people and with a 

view toward minimizing environmental degradation and 

achieving more sustainable development. 

 

Material and Methods 
Study area: Our research area is located on the northern 

flank of the Marrakech High Atlas in an active 

compressional setting16. The Ourika watershed lies between 

latitudes 31°23′ N and 31°03′ N and longitudes 7°35′ W and 

7°53′ W (Figure 1) and covers 575 km². Topographically, 

the altitude is between 800 and 2000 m in the downstream 

with a relief dominated by hills and plateaus. In upstream, 

the summits exceed 3500 m and reach up to 4000 m (Figure 

1). 

 

 
Figure 1: The study area and spatial distribution of landslides inventory 
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The lithological characteristics of the study area are shown 

in figure 2. Geologically, the northern part of the area is 

composed of Triassic sandstones and clays. This emergence 

rests unconformably on Palaeozoic schist. Further south, the 

Ourika River is located at an outcrop of older clastic and 

magmatic terrains comprising Cambrian trachy-andesites 

and conglomerates, Precambrian granites and granodiorites. 

In the southern part of the basin, the Precambrian rocks 

comprise granites and granodiorites (Precambrian I, II and 

III), mica schists and gneisses (Precambrian I) and volcanic 

massifs (Trachy-andesites of Precambrian III) (Figure 2). 

Structurally, the basin is crossed by numerous reverse faults, 

the most important are: The Fault of Sidi Ali Ou Fars, the 

Oukaidemen Fault and the Tizi N'Test Faults17 (Figure 2). 

The trigger for collapse was established as being seismic 

activity related to the proximity of the major Tizin’Test 

fault16,28. 

 

The climate of the Ourika watershed is complex; it 

represents an amalgam of a semi-arid and mountain climate. 

Annual precipitation ranges from 400 to 650 mm on the 

Haouz Plain and the centre of the drainage basin up to 800 

to 1000 mm on the high summits exposed to the humid 

Atlantic Ocean winds. However, the precipitation 

sometimes occurs as storms and exceeds 100 mm per day 

which can initiate landslides and floods19,45. 

 

Methodology: Our approach comprises a quantitative 

method and is based on the principle that anticipation of 

future landslides is based on determining the causative 

factors of the past10. For this, we chose to apply four 

statistical methods: Frequency Ratio Model (Fr), Weighting 

Factor Model (Wf), Weight of Evidence Model (WOE) and 

Logistic Regression Model (LR). 

 

Frequency Ratio Model (FR): The FR method was tested 

by several researchers and is based on the principle of 

establishing the relationship between the spatial distribution 

of landslides and causative factors8,29. Each causal factor is 

subdivided into several classes, so the Fr index value is 

calculated for each class of factors using eq. 1: 

 

𝐹𝑟 =
𝑃𝐿𝑖

𝑃𝐷𝑖
=

(
𝑁𝐿𝑖

𝑁𝐿𝑡
)∗100

(
𝑁𝐴𝑖

𝑁𝐴𝑡
)∗100

                                                    (1) 

 

where PLi denotes the percentage of landslide mapping for 

each class i of causative factors relative to the total number 

of landslides mapped in the study area, PDi is the percentage 

of each class i of causative factors, relative to the total area 

of the watershed, NLi is the number of landslide pixels in a 

thematic class i, NLt is the number of pixels of all landslides, 

NAi is the total number of pixels in a thematic class i and NAt 

is the total number of all pixels. 

 

 
Figure 2: Geological map of the study area 
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The results obtained represent the correlation between each 

class of causal factor and landslide occurrence. Thus, values 

less than 1 indicate a lower probability of the occurrence of 

a landslide and the values greater than 1 indicate a higher 

probability of landslide occurrence. Calculated Fr values are 

used to determine the weight of each class of causative factor 

to achieve a final map that represents the index of 

susceptibility of landslides in a GIS environment (LSI). The 

landslide susceptibility index (LSI) was calculated by a 

summation of each factor ratio value (eq. 2)32: 

 

𝐿𝑆𝐼 (𝐹𝑟) = ∑ 𝐹𝑟                                                   (2)         
 

where Fr is the frequency ratio of each factor type or range. 

 
Weighting Factor Model (Wf): This method is described 

by several researchers as the Statistical Index Method. First, 

the statistical index (Si) is calculated for each class of 

causative factor and is equal to the ratio of the density of 

landslides in the class relative to that in the whole study 

area49. Si is calculated as per eq. 3: 

 

𝑆𝑖 = 𝐿𝑛 
𝑁𝐿𝑖

𝑁𝐴𝑖
⁄

𝑁𝐿𝑡
𝑁𝐴𝑡

⁄
                                                    (3) 

 

where Si represents the weight of each class i of the causative 

factors, NLi is the number of landslide pixels in a thematic 

class i, NAi is the total number of pixels in a thematic class i, 

NLt is the number of pixels of all landslides and NAt is the 

total number of all pixels. 

 

Secondly, to evaluate the weight of each parameter in the 

genesis of the landslides, a weighting factor (Wf) for each 

causal factor has been calculated using the max–min 

approach shown in eq. 4 and eq. 54,36. Then, we calculate the 

final weighting index value of each class i of the causative 

factors (Wfi) using equation eq. 6: 

 

𝑇𝑠𝑖 = 𝑆𝑖 ∗ 𝑁𝐿𝑖                                                                (4) 

 

𝑊𝑓 =
𝑇𝑠𝑖−𝑀𝑖𝑛(𝑇𝑠𝑖)

𝑀𝑎𝑥(𝑇𝑠𝑖)−𝑀𝑖𝑛(𝑇𝑠𝑖)
 * 9+1                                       (5) 

 

𝑊𝑓𝑖 = 𝑆𝑖 ∗ 𝑊𝑓                                                                (6) 

 

where Wf is weighting index value of each causative factor, 

Wfi is final weighting index value of each class i of the 

causative factors, Tsi is the total weighting index value of 

each class i of the causative factors, NLi is the number of 

landslide pixels in a thematic class i, Min(Tsi) is the 

minimum total weighting index value within the selected 

layers and Max(Tsi) is the maximum total weighting index 

value within the selected layers. 

 

Finally, to generate the final landslide hazard map, we use 

the following equation 7: 

 

𝐿𝑆𝐼 (𝑊𝑓) = ∑ 𝑊𝑓𝑖                                                    (7) 

Weight of Evidence Model (WOE): Weight of Evidence 

Model is a statistical method that uses the log linear from the 

Bayesian probability model to estimate the relative 

importance of evidence by statistical means4,40.  

 

The model is based on the calculation of positive and 

negative weights W+ and W− in relation to the presence or 

absence of the landslide in each class of the causative 

factors8. The positive and negative weights are calculated by 

equations 8 and 9 respectively40: 

 

𝑊+ = 𝐿𝑜𝑔𝑒
𝑃{𝐹

𝐿⁄ }

𝑃{𝐹
�̅�⁄ }

= 𝐿𝑜𝑔𝑒

𝑁1
𝑁1+𝑁2

⁄

𝑁3
𝑁3+𝑁4

⁄
                 (8) 

 

𝑊− = 𝐿𝑜𝑔𝑒
𝑃{�̅�

𝐿⁄ }

𝑃{�̅�
�̅�

⁄ }
= 𝐿𝑜𝑔𝑒

𝑁2
𝑁1+𝑁2

⁄

𝑁4
𝑁3+𝑁4

⁄
           (9) 

 

where P is the probability, 𝐹 indicates the presence of a 

causative factor, �̅� indicates the absence of a causative 

factor, 𝐿 indicates the occurrence of landslides, �̅� indicates 

the absence of landslides, N1 indicates the number of pixels 

where a causative factor and a landslide are both present, N2 

is the number of pixels in the study area where a landslide is 

present but a causative factor is absent, N3 is the number of 

pixels where a causative factor is present but a landslide is 

absent and N4 is the number of pixels where a landslide and 

a causative factor are both absent. 

 

From the values of the negative and positive weights, we 

have to establish the correlation between the causative 

factors and the occurrence of a landslide (Table 1). We then 

need to calculate the weight contrast (index C) according to 

equation 10. Based on index C, a final LSZ map was 

prepared (eq. 11): 

 

𝐶 =  𝑊+ − 𝑊−                                                               (10) 

 

𝐿𝑆𝐼 (𝑊𝑂𝐸) = ∑ 𝐶                                                 (11) 

 

Logistic Regression Model (LR): Logistic Regression is a 

Machine Learning algorithm which is used as a classification 

solution, it is a predictive analysis algorithm and based on 

the notion of probability. This method has been widely used 

for landslide assessment. LR represents the analysis of a 

multivariate regression relationship between landslide 

occurrence and the causative variables49.  

 

In other words, LR aims to determine the relationship 

between a dependent variable (Landslide) and independent 

variables (causal factors)37. The benefit of the LR method is 

that variables can be continuous or discrete and they do not 

necessarily have a normal distribution4. 

 

In LR modelling, the dependent factor is a binary variable 

where the presence of a landslide is coded as a 1 and absence 

is coded by 0. However, independent variables can be 

continuous or categorical. 
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Table 1 

The Correlation between causative factor and the occurrence of a landslide according to the  

values of W+ and W− in WOE method (from 40) 
 

 Positive weights W+ Negative weights W− Correlation between causative factor 

and the occurrence of a landslide 

 

Value 

> 0 < 0 Correlation positive 

< 0 > 0 Correlation negative 

0 0 Uncorrelated 

 

In this study we chose to convert the parameters from 

nominal to numerical by coding and ranking the classes 

based on the relative percentage of the area affected by 

landsliding37. This method is cited by Bourenane et al4 and 

is based on calculation of the weight factor for each factor 

class by summing the ratios of the observed landslide area to 

the area of each class. Weight factors have been transferred 

to the quantitative values from 0 to 10. The class with the 

maximum has been given a weight of 10 and the other 

classes were given weights <10 based on their proportions4. 

 

Finally, the probability of the presence, or not, of a landslide 

is calculated according to equations 12 and 13: 
 

𝑃 = 1
1 + 𝑒−𝑧⁄                                                    (12) 

 

𝑍 = 𝛽0 + 𝛽1 𝑥1 + 𝛽2 𝑥2 + ⋯ + 𝛽𝑛 𝑥𝑛                               (13) 
 

where P is the probability, 𝑍 is the linear combination of 

independent variables, 𝛽0 is the intercept of the model, 

𝛽1, 𝛽2 … 𝛽𝑛  are the coefficients of the logistic regression 

model, 𝑥1, 𝑥2 … 𝑥𝑛  are the independent variables and n is the 

number of independent variables.  

 

Conditioning factors database 

Landslide inventory: An inventory of existing landslides 

was performed to determine the relationship between the 

distribution of landslides and causative factors. A set of 100 

landslides were identified and mapped by evaluating 

observations from satellite images (Google Earth images), 

followed by fieldwork carried out from 2010 to 2018. From 

this landslide inventory, approximately 75% were randomly 

selected and reserved for landslide susceptibility assessment 

and 25% were selected for validation (Figure 2). 

 

Based on lithological and geomorphological features, three 

main types of landslides were identified: (1) Major 

landslides identified in the Triassic clay formations 

approaching streams and roads (2) Rockfall along the main 

Ourika River and its principal tributaries especially at cliffs 

comprising Triassic sandstone and conglomerate (3) Rock 

avalanche occurs on the Triassic cliffs and resistant 

Precambrian rocks, particularly along the escarpment of the 

Tizi N’Test faults. 

 
Causal factors: According to several researchers and 

depending on the characteristics of the study area and data 

availability, 13 landslide-conditioning factors were 

considered in the current study and are grouped into six 

classes : topographic factors (elevation, slope angle, slope 

aspect, stream power index (SPI), sediment transport index 

(STI), topographic wetness index (TWI) and curvature), 

geological factors (distance to faults and lithology), 

hydrological factors (distance to rivers), land cover factors 

(NDVI), anthropogenic factors (distance to roads) and 

climatic factors (rainfall)8. The maps of slope angle, 

elevation, slope aspect, curvature, distance to rivers, SPI, 

STI and TWI are generated from a digital elevation model 

(DEM) with a resolution of 30 m and reclassified into 

numerous categories (Table 2 and Figure 4). The lithology 

and distance to faults maps are produced from the geological 

map (Table 2 and Figure 4).  

 

To determine the density of the vegetation, we calculate the 

normalised difference vegetation index (NDVI) from the 

LANDSAT satellite image. The distance to roads map is 

produced from the minimum distance to a road represented 

in a vector format calculated at 100 m intervals (Figure 4). 

The map of rainfall was constructed by spatial modelling of 

the average rainfall at 16 climate stations from 1996 to 2016 

using the Kriging method and reclassifiying it into 4 

categories (Figure 4). The rainfall data were obtained from 

the Hydraulic Basin Agency of Tensift k;  

 

Landslide conditioning factors analysis 
Multicollinearity analysis: Multicollinearity analysis is 

used in statistics to detect the linearity between the 

explanatory factors of a given phenomenon and it is usually 

used in a multiple regression model. Multicollinearity refers 

to the non-independence of landslide conditioning factors 

that may occur in datasets8. In our study, multicollinearity 

for the causative factors of landslides was identified using 

tolerances and VIF methods, according to equations 14 and 

15: 
 

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 1 − 𝑅𝑗
2                                     (14) 

 

𝑉𝐼𝐹 = [
1

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
]                                     (15) 

 

where 𝑅𝑗
2  is the coefficient of determination. 

 

Selection of landslide conditioning factors: The ability to 

predict a landslide depends on the factors introduced into the 

model. In fact, some factors can reduce this capacity and so 

a preliminary selection of the factors is indispensable. For 

this purpose, we used Information Gain value to select 

landslide conditioning factors8. 
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Table 2 

Spatial database of the study area 
 

Factors Data layers Data provider 

Landslide inventory  Google Earth data 

Field investigation 

Topographic factors Elevation  

SRTM-DEM from (http://gdex.cr.usgs.gov/gdex/) 

pixel size of 30 m × 30 m. 
Aspect 

Slope 

Curvature 

SPI 

STI 

TWI 

Geologic factors Lithology Geological map of Morocco at the scale 1:500000 

Geological map of Proust, 1971 

Field work 
Distance to Faults 

Hydrologic factors Distance to Stream DEM at 30m 

Land cover factors NDVI LANDSAT satellite image at 30m from 

(https://earthexplorer.usgs.gov/) 

Anthropogenic Factors Distance to Road Topographic map at the scale 1:50000 

Google Earth data 

Field investigation 

Climatic Factors Rainfall Climatic stations data from hydraulic basin agency of 

Tensift 

 

 
Figure 3: Flowchart of the developed methodology 
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Figure 4: Landslide conditioning factors used in landslide susceptibility analysis 

 

The information gain (IG) value for a landslide conditioning 

factor Xi and class Y is calculated using equations 16, 17 

and 188: 

 

𝐼𝐺(𝑌, 𝑋𝑖) = 𝐻(𝑌) − 𝐻(𝑌𝑖|𝐿𝑖)                      (16) 

 

where 

 

𝐻(𝑌) = − ∑ 𝑃(𝑌𝑖) 𝐿𝑜𝑔2𝑖 (𝑃(𝑌𝑖))                                   (17) 

 

𝐻(𝑌𝑖|𝐿𝑖) = − ∑ 𝑃(𝑌𝑖) ∑ 𝑃(𝑌𝑖|𝐿𝑖)𝐿𝑜𝑔2𝑗 ((𝑃(𝑌𝑖|𝐿𝑖))𝑖      (18) 

 

where 𝐻(𝑌) is the entropy value of Yi, 𝐻(𝑌𝑖|𝐿𝑖) is the 

entropy of Y after associating values of landslide 

conditioning factor 𝐿𝑖, 𝑃(𝑌𝑖) is the prior probability of the 

out-class Y and 𝑃(𝑌𝑖|𝐿𝑖) is the posterior probabilities of Y 

given the values of conditioning factor 𝐿𝑖. 

 

Calculation of the weights and susceptibility map: 

Initially, all of the data used in the present study were geo-

referenced to the Nord Maroc coordinate system. The 

database construction and analysis required several steps: 

Step (1): Classification of thirteen maps of the factors 

controlling landslides and their conversion to a raster format 

with the same spatial resolution (30 m x 30 m). The total 

number of pixels covering the Ourika watershed is 637256. 

 

Step (2): After compiling the inventory map of historical 

landslides, it was converted to a raster format, then divided 

into two parts: approximately 75% for training and 25% for 

validation. The total size of the historical landslides area is 

8104 pixels; 6040 pixels were used for training and 2064 

pixels were used for validation. 

 

Step (3): The results obtained were introduced into the 

Microsoft Excel calculator and the number of pixels in each 

class of each causal factor and the number of landslide pixels 

in each class were all calculated.  This calculates the 

percentage of domain (PD) and percentage of landslide (PL) 

in each class of causal factors. 

 

Step (4): Weight calculation was carried out for Frequency 

Ratio, Weighting Factors and Weight of Evidence Models 

using the equations 1, 6 and 10. Then, landslide 
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susceptibility maps were constructed in GIS software using 

equations 2, 7 and 11 and reclassified into five susceptibility 

classes using the Natural Breaks (Jenks) method with 

rankings of very low, low, moderate, high and very high 

susceptibility. 

 

Step (5): For the Logistic Regression Model, selected causal 

factors and inventory maps (landslides and non-landslides) 

were converted to POINT format, then exported as a dBASE 

table and imported into an SPSS statistical package; the 

correlations between the dependent factor (landslide) and 

independent factors were then calculated. The non-landslide 

data were mapped based on field missions and google earth 

images in equal proportion to landslide inventory pixels. 

Finally, the landslide susceptibility map was constructed 

using equations 12 and 13 in GIS software and reclassified 

into five susceptibility classes using the Natural Breaks 

(Jenks) method. 

 

Model validation and comparison: Validation of the 

results in landslide susceptibility modelling is an essential 

step for the performance of landslide models8,11. In our 

study, we chose three validation methods: (1) Statistical 

rules for spatial effective LHM, (2) Statistical measures and 

(3) Receiver Operating Characteristics Curve (ROC). 

 

Statistical rules for spatial effective LHM: The method is 

based on the spatial distribution of the inventoried landslides 

for a training area according to the different landslide 

susceptibility class (low, very low, moderate, high and very 

high). The goal is to test two characteristics: (1) if the 

percentage of landslides increases with a rise in landslide 

susceptibility and (2) if the highest percentage of observed 

landslides belong to the high-risk class, provided that the 

high-risk class only covers small areas4,43. 

 

Statistical measures: The principle is based on the 

calculation of two parameters: sensitivity and specificity. 

Sensitivity is the proportion of landslide pixels that are 

correctly classified as landslide occurrences and specificity 

is the proportion of the non-landslide pixels that are correctly 

classified as non-landslides8,9. The calculation of sensitivity 

and specificity is carried out according to eq. (19) and (20) 

and then the accuracy of each model is determined by Eq. 

(21) and as the accuracy gets closer to 1, the model becomes 

more efficient. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                     (19) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                     (20) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝑇𝑃
                                    (21) 

 

where TP (true positive) and TN (true negative) are the 

number of pixels that are correctly classified and FP (false 

positive) and FN (false negative) are the numbers of pixels 

incorrectly classified.  

 

The Receiver Operating Characteristics curve (ROC): 

This method is the most useful way to validate the results 

and estimate the excellence and the performance of landslide 

hazard mapping4,8,44. For this method, a comparison is made 

between the landslide susceptibility map and the training and 

validation inventory maps of the historical landslides. The 

receiver operating characteristics curve is a graphical 

representation that plots the cumulative percentage of 

landslides falling into each class on the landslide 

susceptibility maps in the y-axis and the cumulative 

percentage of susceptibility classes in the x-axis18. To finish, 

the air under the curve is calculated (AUC) from the ROC 

curve and the precision of the model is evaluated. The area 

under the ROC curve varies between 0 and 1 which can be 

categorised as poor (0.5–0.6), average (0.6–0.7), good (0.7–

0.8), very good (0.8–0.9) and excellent (0.9–1.0)4,8,23. 

 

Results and Discussion 
Landslide conditioning factor analysis 

Multicollinearity analyses of landslide conditioning 

factors: The multicollinearity analyses of the 13 

conditioning factors of landslides show that tolerance values 

vary between 0.254 and 0.907. Accordingly, the VIF values 

vary between 1.102 (for Curvature Factor) and 3.936 (for 

TWI Factor) (Table 4). These results are tolerable since the 

tolerance values are greater than 0.1 and those of VIF are 

less than 10; it reveals that 13 landslide conditioning factors 

have no multicollinearity. 

 

Table 3 

Description of geological units of the study area 
 

Class Lithology Formation Geological age 

1 Micaschists and Gneiss - Precambrian I 

2 Granodiorites - Precambrian I-II 

3 Granites and Granodiorites - Precambrian II-III 

4 Lavas and Volcanic rocks - Precambrian III 

5 Shale - Paleozoic (viseen) 

6 Conglomerate, Sandstone and Siltstone F5: Oukaimeden Sandstone 

F6: Upper Siltstone 

Triassic and Cambrian 

7 Basalts  Trias 

8 Limestones  Lias-Eocene 

9 Blocks, Gravels and Clays - Quaternary 
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Table 4 

Multicollinearity diagnosis and Average Information Gain for the landslide conditioning factors 
 

  Collinearity Statistics Information 

Gain 

Landslide conditioning factors Tolerance 

 

VIF 

 

Average 

merit 

 

 

 

Topographic 

factors 

Elevation 0.561 1.782 0.233 

Aspect 0.677 1.477 0.121 

Slope 0.261 3.833 0.528 

Curvature 0.907 1.102 0.061 

SPI 0.852 1.174 0.095 

STI 0.858 1.166 0.049 

TWI 0.254 3.936 0.498 

Land cover 

factors 

NDVI 0.803 1.245 0.094 

Hydrological 

factors 

Distance to Rivers 0.653 1.531 0.189 

Geological 

factors 

Distance to Faults 0.640 1.563 0.059 

Lithology 0.618 1.619 0.065 

Anthropogenic 

Factors 

Distance to Road 0.454 2.202 0.051 

Climatic Factors Rainfall 0.904 1.107 0.130 

 

Selection of landslide conditioning factors: The results of 

the analysis using Information Gain method are shown in 

table 4, they show that the Slope and TWI factors have the 

highest Information Gain (0.528 and 0.498 respectively), 

followed by the Elevation (0.233), Distance to Rivers 

(0.189), Rainfall (0.130), Aspect (0.121), SPI (0.095), 

Lithology (0.065), Curvature (0.061), Distance to Road 

(0.059), Distance to Faults (0.051) and the STI (0.049). The 

13 factors have positive Information Gain and all of them 

were included in this analysis. 

 

Correlation between landslides and conditioning factors: 

Figure 6 and table 6 show the spatial relationship between 

each landslide conditioning factor and FR, WF, WOE and 

LR index. 

 

Application of the FR, WF and WOE models: Generally, 

the highest value of FR index is observed in the class of 

slopes exceeding 45°; the value is 6.016. For WF and WOE 

index, the highest values are observed in the first class of 

TWI (10.01 for WF index model and 0.926 for WOE index 

model). This indicates the importance of slope and TWI 

factors in the manifestation of landslides. 

 

Likewise, the results show that the FR, WF and WOE index 

values are higher for altitudes less than 2400 m. Thus, the 

values are either zero (FR and WF) or negative (WOE) for 

the other classes. The highest values are present in classes 

1200-1500 m and 2100-2400 m.  

 

With regards to aspect, the north class has a higher FR, WF 

and WOE values (2.514, 3.128 and 0.474 respectively), 

while flat areas had a null value. For curvature, the first class 

(<-0.6) has the highest value for FR index (1.207), WF index 

(0.228) and WOE index (0.126). The values of the three 

indexes decrease to class (0-0.02) and then increase again. 

 

In the case of slope, SPI and STI factors, the values of FR, 

WF and WOE index increase in parallel from the first class 

to the last class. The highest values are FR = 6.016, WF = 

10.010 and WOE = 0.926 observed in the >45° Slope class; 

FR = 1.320, WF = 0.415 and WOE = 0.238 observed in the 

>1500 SPI class; and FR = 1.059, WF = 0.062 and WOE = 

0.085 for the >15 STI class. Conversely, the FR, WF and 

WOE values decrease for the TWI factors, the most 

important values being 2.820, 10.077 and 1.024 in the first 

class (0-3). In terms of NDVI factor, the class of 0.21-0.25 

has the highest FR, WF and WOE values (1.641, 0.816 and 

0.220 respectively) followed by <0 (bare ground) (FR = 

1.641, WF = 0.816 and WOE = 0.220). The other classes 

have lower FR, WF and WOE values.  

 

In the case of distance to rivers, the three first classes are 

most prone to landslides because they have the maximum 

FR, WF and WOE values. The maximum FR value is 1.920 

in the 100-200 m class followed by 1.524 in the 0-100 m 

class and 1.485 in 200-300 m class; FR values progressively 

decrease away from the rivers. Likewise, WF and WOE 

values are at a maximum in the 100-200 m class (1.589 and 

0.346 respectively), their values are negative 300 m away 

from the rivers. In general, less distances to rivers 

correspond to a higher probability of landslide-occurrence.  

 

For the distance to roads, the 600-700 m class has the highest 

FR value (2.457), WF value (2.348) and WOE value (0.418). 

The minimum value is observed in the last class (>900 m) 

where FR = 0.599, WF = -1.485 and WOE = -0.499. For 

distance to faults, the 600-700 m class has the highest FR 
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value (2.137), WF value (1.575) and WOE value (0.360) 

followed by the 700-800 m class (FR = 2.099, WF = 1.537 

and WOE = 0.349). From a lithological point of view, class 

6 (corresponding with Conglomerate, Sandstone and 

Siltstone from the Triassic and Cambrian) holds the highest 

values of Fr (1.458), WF (0.624) and WOE (0.273). The 

other classes have low or null values for FR and negative 

values for WF and WOE index. In the case of rainfall, the 

highest FR, WF and WOE values correspond to the class of 

>500 mm whereas the lowest NFR values (0) correspond to 

the class of <400 mm. 

Application of the LR model: In the LR model, a 

comparison with the 25% and 75% quotas of overall sample 

is first realised and the confusion matrices are reported in 

table 5. The table reveals a considerable stability in the 

overall performance in both tests (25% and 75%) with values 

of 91.3% and 90.3% respectively which means there is no 

change in the regression coefficients. Next, using the logistic 

regression model, the spatial relationship between landslide 

occurrence and landslide conditioning factors is evaluated 

(Table 6 and Figure 6).  

 

Table 5 

Confusion matrix with validation sample constituted by the 25% and 75% of the overall sample for LR model  

(0: absence of phenomena; 1: presence of phenomena) 
 

   Predicted Percentage 

Correct 

   0 1  

 

25 % of overall sample 

Observed 0 1505 28 98.2 

1 39 470 92.3 

Overall Percentage    96.7 

 
75 % of overall sample 

Observed 0 4440 110 97.6 

1 122 1413 92.1 

Overall Percentage    96.2 

 

Table 6 

Spatial relation between thematic layers and landslides using FR, IV, WOE and LR methods 
 

F
a

ct
o

rs
 Class   Nb of 

pixels 

in class  

% of 

domain 

(PD) 

Nb of 

landslide 

pixels 

% of 

landslide 

(PL) 

FR 

index 

Wfi 

index 

(WFI) 

W+ W- WOE 

(C) 

Factor 

Weight 

index 

(W) 

LR 

coefficients 

(β) 

            β0 = -9.012 

E
le

va
ti

o
n

 869 - 1200 49722 7.803 749 12.401 1.589 2.908 0.203 -0.022 0.226 5.495  

 

 

 

 

 

0.219 

1200 - 1500 64213 10.076 1334 22.086 2.192 4.926 0.345 -0.063 0.408 9.787 

1500 - 1800 74234 11.649 911 15.083 1.295 1.622 0.113 -0.017 0.130 6.684 

1800 - 2100 87226 13.688 1348 22.318 1.631 3.069 0.214 -0.046 0.260 9.890 

2100 - 2400 78571 12.330 1363 22.566 1.830 3.794 0.265 -0.054 0.319 10.000 

2400 - 2700 87835 13.783 335 5.546 0.402 -5.714 -0.398 0.040 -0.438 2.458 

2700 - 3000 70203 11.016 0 0.000 0.000 0.000 0.000 0.051 -0.051 0.000 

3000 - 3300 60098 9.431 0 0.000 0.000 0.000 0.000 0.043 -0.043 0.000 

3300 - 3600 48131 7.553 0 0.000 0.000 0.000 0.000 0.034 -0.034 0.000 

3600 - 4012 17023 2.671 0 0.000 0.000 0.000 0.000 0.012 -0.012 0.000 

A
sp

ec
t Flat  27 0.004 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000  

 

 

 

0.048 

North 43457 6.819 733 12.136 1.780 2.635 0.253 -0.026 0.279 5.553 

Northeast  70302 11.032 1036 17.152 1.555 2.017 0.193 -0.031 0.224 7.848 

East 69797 10.953 211 3.493 0.319 -5.224 -0.499 0.035 -0.535 1.598 

Southeast  81790 12.835 130 2.152 0.168 -8.163 -0.779 0.051 -0.830 0.985 

South  66167 10.383 151 2.500 0.241 -6.509 -0.622 0.037 -0.659 1.144 

Southwest  62050 9.737 571 9.454 0.971 -0.135 -0.013 0.001 -0.015 4.326 

West 74281 11.656 803 13.295 1.141 0.601 0.057 -0.008 0.065 6.083 

Northwest  113981 17.886 1085 17.964 1.004 0.020 0.001 0.000 0.001 8.220 

North  55404 8.694 1320 21.854 2.514 4.214 0.406 -0.068 0.474 10.000 

S
lo

p
e 0 - 5 16831 2.641 58 0.960 0.364 -6.442 -0.442 0.008 -0.450 0.336  

 

 

 

0.942 

5 - 10 42140 6.613 189 3.129 0.473 -4.764 -0.327 0.016 -0.343 1.094 

10 - 15 60684 9.523 260 4.305 0.452 -5.055 -0.347 0.025 -0.372 1.506 

15 - 20 76501 12.005 260 4.305 0.359 -6.530 -0.448 0.037 -0.485 1.506 

20 - 25 91215 14.314 281 4.652 0.325 -7.155 -0.491 0.047 -0.538 1.627 

25 - 30 100910 15.835 472 7.815 0.493 -4.496 -0.309 0.040 -0.349 2.733 

30 - 35 97785 15.345 762 12.616 0.822 -1.247 -0.086 0.014 -0.100 4.412 

35 - 40 76163 11.952 989 16.374 1.370 2.004 0.138 -0.022 0.160 5.727 
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40 - 45 44738 7.020 1042 17.252 2.457 5.724 0.396 -0.051 0.447 6.034 

> 45 30289 4.753 1727 28.593 6.016 11.424 0.799 -0.126 0.926 10.000 

cu
rv

a
tu

re
 < -0.6 207934 32.630 2378 39.371 1.207 0.522 0.081 -0.045 0.126 10.000  

 

 

0.041 

-0.6 - -0.4 38921 6.108 274 4.536 0.743 -0.826 -0.130 0.007 -0.138 1.152 

-0.4 - -0.2 42124 6.610 288 4.768 0.721 -0.907 -0.143 0.009 -0.152 1.211 

-0.2 - 0 43119 6.766 298 4.934 0.729 -0.877 -0.139 0.009 -0.147 1.253 

0 - 0.2 21673 3.401 126 2.086 0.613 -1.358 -0.214 0.006 -0.220 0.530 

0.2 - 0.4 40798 6.402 292 4.834 0.755 -0.780 -0.123 0.007 -0.130 1.228 

0.4 - 0.6 37710 5.918 291 4.818 0.814 -0.571 -0.090 0.005 -0.095 1.224 

> 0.6 204977 32.166 2093 34.652 1.077 0.207 0.031 -0.016 0.047 8.802 

S
P

I 0 - 300 198751 31.189 1527 25.281 0.811 -0.633 -0.093 0.037 -0.130 4.468  

 

0.037 
300 - 600 57817 9.073 212 3.510 0.387 -2.861 -0.415 0.026 -0.441 0.620 

600 - 900 48433 7.600 346 5.728 0.754 -0.852 -0.124 0.009 -0.133 1.012 

900 - 1200 32195 5.052 314 5.199 1.029 0.086 0.012 -0.001 0.013 0.919 

1200 - 1500 26866 4.216 223 3.692 0.876 -0.400 -0.058 0.002 -0.061 0.652 

> 1500 273194 42.870 3418 56.589 1.320 0.836 0.120 -0.118 0.238 10.000 

S
T

I 0 - 3 176749 27.736 1444 23.907 0.862 -0.395 -0.066 0.023 -0.089 3.152  

 

 

 

-0.019 

3 - 6 737 0.116 0 0.000 0.000 0.000 0.000 0.001 -0.001 0.000 

6 - 9 910 0.143 2 0.033 0.232 -3.888 -0.638 0.000 -0.638 0.004 

9 - 12 1236 0.194 4 0.066 0.341 -2.859 -0.469 0.001 -0.470 0.009 

12 - 15 1416 0.222 9 0.149 0.671 -1.063 -0.175 0.000 -0.175 0.020 

> 15 456208 71.589 4581 75.844 1.059 0.154 0.022 -0.063 0.085 10.000 

T
W

I 3.1 - 4.5 112505 24.406 4157 68.825 2.820 10.706 0.600 -0.424 1.024 10.000  

 

-0.005 
4.5 - 5.0 200613 43.519 1140 18.874 0.434 -4.026 -0.225 0.074 -0.299 2.742 

5.0 - 5.5 178595 38.743 412 6.821 0.176 -11.120 -0.617 0.113 -0.731 0.991 

5.5 - 6.0 86176 18.694 172 2.848 0.152 -12.259 -0.680 0.051 -0.731 0.414 

6.0 - 6.5 33512 7.270 73 1.209 0.166 -11.571 -0.642 0.018 -0.660 0.176 

6.5 - 12.0 25855 5.609 86 1.424 0.254 -8.240 -0.458 0.012 -0.469 0.207 

N
D

V
I < 0 4951 0.777 77 1.275 1.641 1.553 0.218 -0.002 0.220 0.454  

 

 

 

 

0.122 

0.01 - 0.05 65535 10.284 327 5.414 0.526 -2.013 -0.281 0.023 -0.304 1.927 

0.06 - 0.1 215682 33.845 1572 26.026 0.769 -0.824 -0.116 0.050 -0.166 9.263 

0.11 - 0.15 172561 27.079 1697 28.096 1.038 0.116 0.015 -0.006 0.021 10.000 

0.16 - 0.2 78551 12.326 1093 18.096 1.468 1.204 0.168 -0.030 0.198 6.441 

0.21 - 0.25 58248 9.140 1006 16.656 1.822 1.882 0.263 -0.038 0.301 5.928 

0.26 - 0.3 27051 4.245 202 3.344 0.788 -0.748 -0.105 0.004 -0.109 1.190 

> 0.3 14677 2.303 66 1.093 0.474 -2.339 -0.326 0.005 -0.331 0.389 

D
is

ta
n

ce
 t

o
 r

iv
er

s 0 - 100 84256 13.222 1217 20.149 1.524 1.594 0.184 -0.036 0.221 8.631  

 

 

 

 

 

0.464 

100 - 200 77478 12.158 1410 23.344 1.920 2.469 0.286 -0.060 0.346 10.000 

200 - 300 73746 11.572 1038 17.185 1.485 1.497 0.173 -0.029 0.202 7.362 

300 - 400 68072 10.682 633 10.480 0.981 -0.072 -0.009 0.001 -0.010 4.489 

400 - 500 62947 9.878 452 7.483 0.758 -1.051 -0.122 0.012 -0.133 3.206 

500 - 600 57850 9.078 421 6.970 0.768 -1.000 -0.116 0.010 -0.126 2.986 

600 - 700 51229 8.039 273 4.520 0.562 -2.179 -0.252 0.016 -0.269 1.936 

700 - 800 44679 7.011 216 3.576 0.510 -2.548 -0.295 0.016 -0.310 1.532 

800 - 900 36894 5.790 171 2.831 0.489 -2.707 -0.313 0.014 -0.326 1.213 

> 900 80105 12.570 209 3.460 0.275 -4.882 -0.563 0.044 -0.607 1.482 

D
is

ta
n

ce
 t

o
 F

a
u

lt
s 0 - 100 42883 6.729 288 4.768 0.709 -1.201 -0.151 0.009 -0.160 1.325  

 

 

 

 

 

 

0.029 

100 - 200 41683 6.541 272 4.503 0.688 -1.301 -0.164 0.009 -0.173 1.252 

200 - 300 39738 6.236 285 4.719 0.757 -0.972 -0.122 0.007 -0.129 1.312 

300 - 400 37808 5.933 324 5.364 0.904 -0.351 -0.044 0.003 -0.047 1.491 

400 - 500 35342 5.546 511 8.460 1.525 1.472 0.185 -0.014 0.199 2.352 

500 - 600 32411 5.086 594 9.834 1.934 2.299 0.290 -0.022 0.312 2.734 

600 - 700 30556 4.795 619 10.248 2.137 2.648 0.334 -0.026 0.360 2.849 

700 - 800 27648 4.339 550 9.106 2.099 2.584 0.326 -0.022 0.349 2.531 

800 - 900 24551 3.853 424 7.020 1.822 2.092 0.264 -0.015 0.278 1.951 

> 900 324636 50.943 2173 35.977 0.706 -1.213 -0.154 0.118 -0.272 10.000 

D
is

ta
n

ce
 t

o
 R

o
a
d

s 0 - 100 44049 6.912 516 8.543 1.236 0.832 0.093 -0.008 0.100 2.383  

 

 

 

 

 

-0.076 

100 - 200 33962 5.329 554 9.172 1.721 2.133 0.238 -0.018 0.257 2.559 

200 - 300 29273 4.594 515 8.526 1.856 2.430 0.272 -0.018 0.290 2.379 

300 - 400 25696 4.032 418 6.921 1.716 2.122 0.237 -0.013 0.251 1.931 

400 - 500 23064 3.619 313 5.182 1.432 1.410 0.157 -0.007 0.165 1.446 

500 - 600 21551 3.382 415 6.871 2.032 2.785 0.312 -0.016 0.328 1.917 

600 - 700 20184 3.167 470 7.781 2.457 3.531 0.396 -0.021 0.418 2.171 

700 - 800 18726 2.939 364 6.026 2.051 2.822 0.316 -0.014 0.330 1.681 

800 - 900 17358 2.724 310 5.132 1.884 2.489 0.279 -0.011 0.290 1.432 
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> 900 403393 63.302 2165 35.844 0.566 -2.234 -0.250 0.248 -0.499 10.000 

L
it

h
o

lo
g

y 1 13887 2.179 128 2.119 0.972 -0.088 -0.012 0.000 -0.013 0.443  

 

 

 

 

 

0.078 

2 6060 0.951 0 0.000 0.000 0.000 0.000 0.004 -0.004 0.000 

3 291515 45.745 2280 37.748 0.825 -0.604 -0.086 0.062 -0.147 7.897 

4 51169 8.030 426 7.053 0.878 -0.408 -0.057 0.005 -0.062 1.476 

5 51072 8.014 224 3.709 0.463 -2.422 -0.337 0.020 -0.357 0.776 

6 208951 32.789 2887 47.798 1.458 1.184 0.164 -0.110 0.273 10.000 

7 738 0.116 0 0.000 0.000 0.000 0.000 0.001 -0.001 0.000 

8 2706 0.425 0 0.000 0.000 0.000 0.000 0.002 -0.002 0.000 

9 11158 1.751 95 1.573 0.898 -0.337 -0.047 0.001 -0.048 0.329 

R
a

in
fa

ll
 < 400 200517 31.466 179 2.964 0.094 -11.515 -1.030 0.153 -1.183 0.589  

 

0.074 
400 - 450 200705 31.495 2164 35.828 1.138 0.628 0.055 -0.028 0.083 7.125 

450 - 500 202753 31.817 3037 50.281 1.580 2.231 0.199 -0.137 0.336 10.000 

> 500 33281 5.223 660 10.927 2.092 3.598 0.325 -0.027 0.352 2.173 

 

 
Figure 5: The relative importance of the most landslide conditioning factors using IG method  

(a) and (b), LR model (c), FR model (d), WF model (e) and WOE (f), for FR, WF and  

WOE models just the first 14 classes that control landslides are presented 
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The relative importance of the conditioning factors can be 

assessed using the corresponding coefficients in the LR 

model. In this study, all coefficients are positive indicating 

that they are positively related to the probability of landslide 

manifestation except STI, TWI and distance to roads. From 

these results, it can be implied that the slope, distance to 

rivers and Elevation had the highest coefficients (0.942, 

0.464 and 0.219 respectively) which indicate the importance 

of these factors in the genesis of the landslides.  

 

A logistic regression equation was obtained as shown in eq. 

22: 

 
𝑍 = −9.012 + 0.219 ∗ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 0.048 ∗ 𝐴𝑠𝑝𝑒𝑐𝑡 + 0.942 ∗
𝑆𝑙𝑜𝑝𝑒 + 0.041 ∗ 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 + 0.037 ∗ 𝑆𝑃𝐼 − 0.019 ∗ 𝑆𝑇𝐼 −
0.005 ∗ 𝑇𝑊𝐼 + 0.122 ∗ 𝑁𝐷𝑉𝐼 + 0.464 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑟𝑖𝑣𝑒𝑟𝑠 +

0.029 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑓𝑎𝑢𝑙𝑡𝑠 − 0.076 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑟𝑜𝑎𝑑𝑠 +

0.078 ∗ 𝐿𝑖𝑡ℎ𝑜𝑙𝑜𝑔𝑦 + 0.074 ∗ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙          (22) 

 

Landslide susceptibility mapping using FR, WF, WOE 

and LR models: The relationship between landslides and 

influencing factors was analysed; the degree of spatial 

correlation between landslides and each factor using the FR, 

WF, WOE end LR models is shown in table 6. From the 

equations mentioned above, susceptibility maps of 

landslides were produced. The four final maps created using 

the FR, WF, WOE and LR models are grouped in figure 7 to 

conduct comparative visualisation. The landslide 

susceptibility maps were reclassified into five classes using 

the Natural Breaks (Jenks) method in a GIS environment: 

very low, low, moderate, high and very high (Figure 7 and 

8). 

 

 
Figure 6: The relationship between landslide and influencing factors class and their FR, WO, WOF index values 



      Disaster Advances                                                                                                                            Vol. 14 (6) June (2021) 

49 

In the case of the FR model, it can be observed (Figure 8) 

that the very low susceptibility class accounts for 23.89% of 

the study area. The low, moderate and high susceptibility 

classes account for 27.52%, 28.23% and 14.81% of the study 

area respectively. The very high susceptibility class accounts 

for 5.55% of the study area. According to the maps of 

susceptibility to landslides derived from the WFI model, 

areas with a very low index represent 19.88% of the total 

area. Areas with a low, moderate and high index account for 

22.56%, 28.34% and 14.60% of the area respectively. The 

area most threatened by landslides covers 14.62% of the total 

basin area.  

 

Regarding the landslide susceptibility map generated by the 

WOE model, 18.28% of the study area belongs to the very 

low susceptibility class. The low susceptibility class 

accounts for 22.55% of the study area and the moderate 

susceptibility class accounts for 28.39% of the study area. 

The high and very high susceptibility classes account for 

19.54% and 11.24% of the study area respectively. 

Regarding the LR model, figure 7 shows that the very low 

classification has the maximum area percentage (34.74%) 

followed by the very high (22.06%), low (18.11%), high 

(12.69%) and moderate classification (12.39%). 

 

Model performance and evaluation 

Statistical rules for spatial effective LHM: In order to 

verify the results obtained, the four susceptibility maps and 

the landslide inventory map were compared (Figure 8). For 

the four models, we see that the majority of the active 

landslides for validation (25%) falls into the very high 

susceptibility class: 60.08%, 86.29%, 77.52% and 82.61% 

for the FR, WFI, WOE and LR susceptibility map 

respectively. The very low susceptibility class either has 

very weak or no landslide occurrence in all maps: 0% for the 

FR, WF and WOE models and 1.21% for the LR model.  

 
Figure 7: Landslide susceptibility map generated by a FR, WF, WOE and LR models 
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It is clear from these results that the field-recorded landslide 

zones have a better fit with the WOE and LR maps than the 

WF and FR maps. This indicates that the landslide 

susceptibility prediction is better by LR and WOE than the 

WF and Fr methods. 

 

Statistical measures: The performance of the landslide 

models using statistical measures is shown in table 7. It 

shows that the highest classification accuracy is for the LR 

model, whose value is 94.40%, although the lowest value is 

for the WOE model with 89.13%. The classification 

accuracy is almost equal for the FR model with 90.37% and 

with WF model as 93.18%.  

 

Regarding the sensitivity for all models, table 7 shows that 

the LR model has the highest sensitivity (97.71%) indicating 

a high probability of correctly classifying the landslide 

pixels to the landslide class. This is followed by the WF 

model (96.04%) and then the FR model (92.81%) and the 

lowest sensitivity (89.79%) was found in the WOE model. 

Concerning specificity, the highest value is for the WOE 

model (85.42%) indicating that 85.42% of non-landslide 

pixels are correctly classified to the non-landslide class 

followed by the LR and WF models (83.68% and 83.13% 

respectively). The lowest specificity is for the FR model 

(80.31%).  

 

The Receiver Operating Characteristics Curve (ROC): 

The estimation of prediction capability for the four landslide 

susceptibility models is obtained by comparing the landslide 

training and validation inventory with the susceptibility 

maps. Then, the rate curves were created (ROC) and the 

areas under each curve (AUC) were calculated (Figure 9).  

 

The prediction-rate curve, obtained by comparing the 

landslide training data with the susceptibility map (Figure 

9a) showed that the AUC values were 0.75 for the FR and 

WF models, 0.80 for the WOE model and 0.82 for the LR 

model. Moreover, in the prediction-rate curve obtained by 

comparing the landslide validation data with the 

susceptibility maps (Figure 9b), it was observed that the FR, 

WF, WOE and LR landslide models present good 

performance for landslide susceptibility assessment (AUC > 

0.8). The LR model achieved the best performance (AUC = 

0.88) followed by the WOE model (AUC = 0.82), WF model 

(AUC=0.81) and FR model (AUC=0.80). 

 

 
Figure 8: Percentages of different landslide susceptibility classes 
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Figure 9: ROC curves for the four landslide susceptibility maps produced by FR, WF, WOE and LR models:  

(a) landslides training, (b) landslides validation 
 

Table 7 

Model performance using validation dataset 
 

Parameters Models 

 FR WF WOE LR 

True positive 1963 1966 2006 1963 

True negative 412 483 340 518 

False positive 101 98 58 101 

False negative 152 81 228 46 

Sensitivity 0.928 0.960 0.897 0.977 

Specificity 0.803 0.831 0.854 0.836 

Accuracy 0.903 0.931 0.891 0.944 

 

The results of the ROC evaluation show that all of the 

models chosen for the spatial prediction of landslide 

susceptibility analysis in the Ourika Basin presented 

judiciously high prediction accuracy. Furthermore, the LR 

model showed the best result for landslide susceptibility 

mapping in the Ourika watershed. 

 

Conditioning factors contribution analysis: Analysis of 

relative importance of conditioning factors contribution to 

landslides by IG method (Figure 5a and b) shows that 

topographic factors had the most impact on landslides 

occurrence in the study area (IG=0.226) with slope and TWI 

as main factors (IG=0528 and IG=0.498 respectively) 

followed by hydrological factors (IG=0.189) and climatic 

factors (0.130).  

 

The importance of topographic and hydrological factors is 

demonstrated by most previous research in similar areas 

around the world9,27. On the contrary, land cover, geological 

and anthropogenic factors achieved the lowest values 

(IG=0.094, IG=0.062 and IG=0.051 respectively). 

 

Otherwise, the assessments of the spatial relationships 

between the conditioning factors and the landslides 

susceptibility maps developed by FR, WF and WOE models 

show that landslides formed principally in areas with a slope 

greater than 45° and TWI between 3.1and 4.5 (Fig. 5d, e and 

f). These classes are followed by Aspect (North) and Slope 

(40-45°) for FR and WOF models and by the slope (40-45°) 

and elevation (1200-1500m) for WF model. The results 

based on the LR model showed that slope, distance to rivers, 

elevation and NDVI are the most important factors which are 

closely correlated to the occurrence and spatial distribution 

of landslides compared with other factors (Figure 5c). 

 

The results of our study are largely correlated with previous 

studies in similar areas. Indeed, the importance of 

topographic factors in landslides occurrence is shown by 

several previous studies2. In the study area, the slope holds 

the key role followed by TWI, given that escarpments and 

soil wetness destabilize slopes.  

 

Ever, the role of recent tectonic and deepening of rivers is 

important, since these are the factors responsible for the 

permanent increase of the slopes. Instead, other factors have 

a minimal role in the manifestation landslides, especially: 

distance to faults, distance to roads and STI factors.  
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Generally, the role of faults is difficult to be awarded by 

accuracy, since the mapping of faults is very old and only a 

small portion of the structures is mapped (geological map of 

the study area was carried out in 1971). Finally, the weak 

participation of anthropogenic factors in the evidence of the 

landslides will find its explanation in the low population 

density of the study area in addition to the weakness of the 

road infrastructure due to the escarpment of reliefs and 

strong slopes.  

 

Model performance and comparison: This study evaluates 

the performance of FR, WF, WOE and LR Models for 

landslide susceptibility mapping in the Ourika area of 

Morocco. The inventory of previous landslides is a critical 

step in the assessment of vulnerability to landslides in 

parallel with an inventory of non-landslides areas, especially 

for the LR model. In some previous studies, non-landslide 

data were generated randomly in the study area8,42 and this 

method may raise some uncertainties27. Hence, in this study, 

we have mapped areas of non-landslides inventory based on 

field missions and google earth images to overcome this 

problem.  

 

On the other hand, to find a more precise model, the 

Information Gain Method was used for optimisation of the 

landslide conditioning factors7,8 and Multicollinearity 

analysis was used to detect the linearity between the 

conditioning factors. A total of 13 conditioning factors were 

selected based on the characteristics of the study area, the 

literature and their Information Gain value. For validation, 

we chose to compare the resulting susceptibility maps with 

the inventory maps (training and validation in the ratio 75% 

to 25% respectively)27.  

 

Generally, performance evaluation revealed that the four 

models have a higher accuracy revealing a good result. 

Moreover, according to this research, it seems that the LR 

model (accuracy = 94.40% and AUC=0.88) is the most 

appropriate algorithm for landslide susceptibility in the 

Ourika area and similar areas. 

 

Conclusion 
Different researchers have proposed several methods for 

landslide susceptibility mapping. For our case study, we 

applied the Frequency Ratio, Weighting Factor, Weight of 

Evidence and Logistic Regression models in order to 

understand the processes that contribute to the phenomena. 

The study was conducted in three stages: in the first stage, 

we completed an inventory of landslides and non-landslide 

samples; the second step consisted of determining the 

causative factors and their relationship with landslides.  

 

The last step is the realisation of the landslide’s 

susceptibility maps and application of the validation 

methods. The 13 causative factors selected in this study 

were: elevation, aspect, slope angle, curvature, SPI, STI, 

TWI, distance from rivers, distance from faults, distance 

from roads, NDVI, lithology and rainfall. A multi-

collinearity analysis and Information Gain method were 

executed to choose the appropriate landslide conditioning 

factors. The 13 factors have positive Information Gain and 

all of them were included in this analysis. 

 

Finally, the trained FR, WF, WOE and LR models were 

applied to generate landslide susceptibility maps. The results 

indicate that these four models may well be useful methods 

for assessment of landslide phenomena and the realisation of 

landslide susceptibility maps in similar areas. 

 

In addition, the LR algorithm showed the most stable and 

reasonable results in this work. In similar area, such a study 

is of great importance for the protection of property and 

people that are vulnerable to extreme phenomena. Similar 

studies would be important using new computer technology 

to achieve a preventive plan for natural hazards. 
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