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Abstract 
This study presents a review of the methodology of 

rapid damage assessment by earthquakes in buildings, 

with its origin, general base, links with other similar 

methodologies and its international use.  

 

In addition, it also presents other methodologies to 

assess damage based on imagery, laser and radar 

scanners with a possible future use to evolve rapid 

damage assessment. Rapid damage assessment 

methodology evidences advantages to reach its 

objectives and recommendations for structural 

analysis and design. This methodology is useful for 

cases with buildings that have obvious damage after 

earthquakes, but not in cases without obvious loss of 

structural resistance facing aftershocks. 
 
Keywords: Rapid Damage Assessment, Structures, 

Earthquakes, Satellite imagery, Drone. 

 

Introduction 
The cost of damages and casualties from disasters occurring 

in the ten year period from 1976 to 2014 have increased from 

US$14 billion to US$140 billion 91. Assessment of damages 

caused by disasters of this magnitude in cities or towns with 

dense populations needs to be performed quickly in order to 

determine whether buildings are stable or must be evacuated 

to protect lives of people. 

 

Implementing techniques to estimate casualties, deaths, 

economic losses and helping to manage resources for 

emergencies using a large-scale144 (1:10.000 to 1:25.000) 

would neither focus on individual buildings nor on usability 

or habitability in homes.  

 

Rapid Visual Screening (RVS) is a procedure for qualitative 

and superficial assessment of structural behaviour. RVS 

could apply to structural vulnerability assessment before 

earthquakes and also to assess damage by earthquakes. 

 

Zones affected by earthquakes need rapid assessment for 

different purposes. These purposes are interpretations of 

landing movements68, detection of damage137, assessment of 

sanitary situations and health needs166 and even mental 

health52.  

 

Other purposes are social impact118 and economic impact to 

requirement versus institutional response capacity174, to 

establish accessibility of homes and the magnitude of 

reconstruction170, effects of continuity in hospitals28, bridge 

inspections192 and also the assessment of immediate 

usability of buildings.   

 

Structural assessment after earthquakes on buildings are, in 

general, Rapid Damage Assessment (RDA), Detailed 

Evaluation Method (DEM) and Engineering Assessment. 

RDA is for buildings not designated to provide public 

services in emergencies (hospitals, vital lines like buildings 

for public transportation, communications, etc. and public 

security). DEM is for buildings with emergency attention 

and for buildings with restricted use after an RDA. 

Engineering Assessment is for buildings with Restricted Use 

after a RDA or after a DEM39. 

 

Classification of techniques 
Methods for assessment of damages to buildings by 

earthquakes are shown in Table 1. 

 

Classification of methodologies according to 

development time: Techniques for assessment damages to 

buildings, according to development time referent the 

moment of occurrence of earthquake, could be divided as:  

 

1) Predictive assessment of damages which includes 

assessment based on seismic parameters and different 

scenarios with approximate results of collapsed buildings. 

These techniques include predictive RVS and predictive 

engineering. Predictive RVS uses vulnerability functions of 

different types of buildings and techniques of predictive 

engineering use numeric models in specific buildings. 

Probabilistic estimation of damages after earthquakes could 

use information based in Predictive RVS as a case presented 

by Cardona and Bernal.38  

 

2) Posterior of earthquakes which includes tele-detection 

with imagery from satellites, aerial images from planes and 

Unmanned Aerial System (UAS)100; traditional RVS over 

individual buildings with human teams (RDA and DEM); 

engineering assessment with numeric models and field trials.  

 

It is important to note that engineering assessment will be 

different depending on whether buildings have previous 

instrumentation or not. Structural Health Monitoring (SHM) 

is an engineering assessment for instrumented buildings and 

seismic vulnerability assessment is for non-instrumented 

buildings.
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Table 1 

Method of assessment of building damage 
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With previous and 

posterior 

images1,3,4,78,85,88,126,1

50,177,179,180 

With posterior images 

only62,100,119-121,180 

DEM for 

homes19,21,133 

Probabilistic estimation of 

damages7,38,138,164 

DSM122,152 

Engineering of instrumented 

buildings36,60,61,124 

 

Classification of methodologies according to type of 
imagery: Techniques for assessment earthquake damage to 

buildings according to type of imagery, could be divided as: 

1) Visual interpretation and 2) Automatic interpretation. 

This methodology could be different when the assessment 

use, images or data previously to earthquake and when the 

assessment makes or not a Digital Surface Model (DSM) 

after earthquakes with or without other previous DSM for 

comparison120. 

 

Rapid damage assessment 
Detailed assessment for buildings is complex, expensive and 

it cannot be used in all buildings in an affected area175. Rapid 

Damage Assessment (RDA) has been created for this 

purpose based on a RVS. This kind of evaluation uses 

sidewalk surveys designed to record external visual 

qualifications and in some cases, interior visual 

qualifications. Because resources are normally limited, this 

methodology is used nowadays to assess damage by 

earthquakes. 

 

Assessing a big amount of private use buildings and others 

with an important function of management of emergency is 

necessary in urban areas. Wrong assessment with RDA, such 

as, declaring uninhabitable habitable buildings increases 

shelters unnecessarily; or declaring habitable buildings at 

risk of collapse increases victims of aftershocks125. 

 

RDA aims to establish immediate habitability in buildings 

after earthquakes, it could contribute data for other purposes 

like fatalities and casualties in general. RDA is not useful to 

establish requirements of immediate emergency actions.  

 

Beginning of methodology RDA: Beginning of RDA could 

be established in European Middle Age153, in earthquakes of 

Ferrara (Italia) 1570-1574 (VIII109 Mw 5,8186) with assessing 

buildings94 for mandate by Duke Estensi to architect Pirro 

Ligorio (1503-1583)49. For early modern period153, the 

International Conference of Building Officials of 1979 

published a general methodology for assessing disasters102, 

it is not specific for earthquakes, but has a similar form to 

RDA. A Japanese method was published for assessing, with 

three stages of damage in concrete structures142. 

 

Documents with remarkable importance for beginnings of 

RDA are publish in 1988 by American Society of Civil 

Engineers (ASCE) for Federal Emergency Management 

Agency (FEMA). These documents aim to advance the 

manual Seismic Evaluation of Existing Buildings ASCE 31-

03 99 to a prestandard Handbook for Seismic Evaluation of 

Existing Buildings FEMA-178 and standard for the 

American National Standards Institute, Handbook for the 

Seismic Evaluation of Buildings FEMA-31073. With current 

importance, the Applied Technology Council (ATC) from 

USA published in 1989 Procedures for Post-earthquake 

Safety Evaluation of Buildings (ATC-20)19 commissioned 

by FEMA, California Governor’s Office of Emergency 

Services and California Office of State wide Health Planning 

and Development22. This document includes procedures for 

RDA and DEM, but it not include engineering assessment. 

 

General base of RDA: The ATC-20 guides with procedures 

to assess safety after earthquakes in common buildings in 

USA. It aims that two evaluations to the same building 

should have the same basic conclusion in terms of safety of 

habitability. One reason to have more methodologies based 
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in ATC-20 is adaptation to local conditions in different 

countries, for example, common buildings. Collapses, 

foundation displacement, inclination, severe damages in 

structure or walls, fallings of non-structural elements, 

fissures or cracks and existence of other hazards are 

included. These criteria have different degrees of damage 

from no damage to severe. 

 

Buildings with public use in emergencies should not be 

evaluated with RDA. The time span used for a RDA is 

relative to personnel in charge, but this lapse is reasonable 

between 10 and 75 minutes plus time to translate the 

personnel between buildings, compilation of data, analysis 

and reports70,75. The time span for a DEM could take up four 

hours and the engineering assessment usually takes weeks18. 

 

Some earthquakes-damaged buildings may be subject to fire. 

These buildings reduce their strength and stiffness due to 

high temperatures45, however, RDA cannot be applied in 

these cases because these buildings need expensive 

numerical model. 

 

Experiences of RDA: Just for appreciating the amount of 

damaged buildings in need of assessment, here three 

Colombian cities are shown as examples, Cali with 

population of 1’822.871, Pasto with 352.326, Bogotá, D. C. 

with 7’181.469, cities in a country with population of 

44’164.417 in census55. Miyamoto135 estimates that in urban 

zone of Pasto, 60% of buildings could be damaged with a 

degree of non-habitability and these 58.500 buildings should 

be assessment. Herrera et al98 estimated that 94,6% of 

buildings of Valle de Aburrá have damages and that these 

buildings need to be assessed after an extreme-earthquake 

scenario. Plus, earthquake in Gorkha (Mw 7,8)57 Nepal 

(2015), with 66.506 homes in a population of 271,061, in a 

country with 5’427.302 of homes for a population of 

26’494.50442, produced 498.852 collapsed buildings and 

other 256.697 partially damaged buildings86. Aftershocks of 

this earthquake lasted many days, one of them for 17 days 

after with Mw de 7,3 with 200 deaths more and 2,500 injured 

more and increase damage83. This situation show the 

necessity that assessment of damage must be rapid. 

 

The Mexican Centro Nacional de Prevención de Desastres 

(National Centre of Disaster Prevention) has a rule and a 

manual for RDA37. It includes the Red Nacional de 

Evaluadores (RNE) (National Network of Evaluators). The 

RNE is compound by Civil Engineers and Architects with 

technical knowledge related to damages and earthquakes. In 

the event of disasters, the RNE invokes its members. 

 

Although, in general, this methodology is similar in different 

countries, in Canada, poorly scoring buildings show  a likely 

appropriate behaviour, in contrast highly scoring ones 

require the evaluation of more experienced engineers161. 

 

Due to earthquake in municipality of Lorca (Spain) in 2011 

(M=5,1108), consequences of earthquake and performance of 

the Protección Civil were analysed.155,165 Two hundred 

evaluators, in couple teams, used on an average 43 minutes 

to fulfil each RDA for 7.862 buildings. These RDA lasted 

one week according to their public plans. According to this 

experience, one could estimate that for Colombian estimates 

of damages in Pasto135 and  Valle de Aburrá98, it requires 

participation of 1.488 and 8.423 evaluators respectively. 

Likewise, accepting that the Instituto Distrital de Gestión de 

Riesgos y Cambio Climático (IDIGER) (Local Institute of 

Risk Management and Climate Change)103 reaches keeping 

3.000 voluntary evaluators104 and accepting evaluating of 

60% of buildings  in an extreme event according to 

Miyamoto135, Bogotá will require three months to develop 

all necessary RDA.  

 

It is important to point out that despite the fact that in Lorca, 

the acquisition of satellites images within the SAFER 

program of the E. U., the interpretation results were available 

just one week after. That is the reason why the field teams 

were more effective and the use of UAS has to receive more 

attention in the future. 

 

Allali et al10 show a technique with machine learning of 

fuzzy logic with a data test composed by RDA of earthquake 

in Boumerdes (Argelia) with Mw 6,8139, reaching 90% of 

precision over conclusions of evaluators. 

 

RDA from institutions: Results from RDA have 

importance for governments and they create rules and 

procedures based on these results. These nexus between 

results of RDA and rules affect to economic heritage and 

economy of a countries. It also affect psychosocial situation 

on people, attention of homeless people, immediate 

investment for demolish and future investment in repairs and 

reconstructions. There are officials documents for RDA, 

among others in Italy29, Pasto (Colombia)135, Manizales 

(Colombia)23, Bogotá (Colombia)23, El Salvador11, 

México37, Spain82, Argentina171, Guatemala50, Chile101,141 

and Venezuela159. 

 

In Spain by real decree92,93, for homologations and up 

integrating of emergency plans from territories, these plans 

must have immediate and punctual procedures to assess 

damages by catastrophes. Carreño et al39 show an analysis of 

applications of RDA in former Yugoslavia, U.S.A., Japan, 

Mexico, Italy and Colombia. This analysis conclude that in 

spite of differences, the RDA is similar in these countries 

and these RDA have similar basic difficulties. The Grupo de 

Evaluación de Daños (Damage Assessment Group) as part 

of Plan Especial de Protección Civil ante Riesgo Sísmico 

(Special Civil Protection Plan for Seismic Risk)172 in Murcia 

(Spain) has the main objective to validate in three days or 

maximum five days in extreme cases, the habitability of 

homes with structures type frames58 or walls59. 

Classification of  degree of damages is with code of colours: 

Green (habitable with no damages or irrelevant damages), 

yellow (restricted use with moderate structural damages), 

red (not habitable with severe structural damages) and black 
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(collapse risk)79. For green cases is recommended a new 

DEM, but for others cases this DEM is mandatory. 

 

El Salvador has the Comisión Evaluadora de Riesgos (CER) 

(Risk Assessment Commission)187 with protocols and 

training procedures manual for professional post-earthquake 

evaluators151. The continuously updated database is part of 

an approved system by CER. The duration of each RDA by 

three evaluators takes from 15 to 60 minutes. The designed 

form for this purpose has fields for supporting final 

recommendation of habitability and other fields with other 

purposes. In the manual151, there is no evidence of need for 

future use in recommendations in structural analysis and 

design. 

 

In Guatemala50,137, there are documents for RDA; a form 

with two pages includes estimates for global damage, 

sketches, requirement of specialized visit, habitability, 

safety procedures. Although not common in others 

countries, Guatemala includes approval of the visit of a 

community leader or owner. Others countries include a 

signature as a witness to the visit, but no approval. This form 

includes protocols for evaluator team training and 

management and an unusual possibility of flooding 

 

The Annexed A in Chilean norm of seismic design of 

buildings NCH433of96 is not mandatory105, but it defines 

criteria and procedures for damages assessment and guides 

in structural recovery, it refers without being explicit, 

damages grades of mild, moderate and severe37. It includes 

instructions for technical damage assessment based in 

experiences from Japan, Turkey and U.S.A. among others. 

Chile has a network of volunteers as part of the Unidad de 

Evaluación Estructural Rápida (Rapid Structural 

Assessment Unit)169. Chilean RDA form141 shows that if 

external inspection shows a severe damage, an internal 

inspection should not be done and the buildings should be 

marked as unsafe.  

 

The evaluator kit has a minimum, evaluator safety, length 

and slope measurement and a basic calculator. The ratings 

slopes are less than 1.7%, greater than 3% and the range. 

These deformations, although they are plastic, could be 

compared with limits of elastic drift in other Latin-American 

countries like Colombia and Ecuador with 1%162 y 2%132 

respectively. Chile has a guide101 based in the GUÍA AIS80 

by Asociación Colombiana de Ingeniería Sísmica (AIS). 

 

The Colombian document base for RDA is Guía Técnica 

para Inspección de Edificaciones Después de un Sismo 24, it 

was updated and improved in GUÍA AIS80 including a 

form25. This document includes the year of construction with 

periods based in validity period of Colombian laws. Limits 

of these periods are 1984, 1997 and it is easy to think that 

2010 will be included with the current rules. This document 

has also included 1930 due to the importance in the 

construction of tall and complex buildings worldwide47. 

Although generally RDA has three classes of global damage 

with label of colour green, yellow and red, Colombia without 

the proposed RDA of San Juan de Pasto136, it includes four 

degrees of damages with labels with their colours. These 

degrees of damage are habitable for none or mild damages 

(green), restricted use for moderate damages (yellow), non-

habitable for strong damages (orange) and no habitable with 

collapse risk for severe damages (red). 

 

City of San Juan de Pasto (Colombia) with phase I of the 

program PREPARE135 supported by OFDA - USAID184 

estimates that with an earthquake with Aa in rock of 0.25g, 

deaths may be up to 5.200 people, 43.000 injuries and 58.500 

buildings not habitable (60% of all). Phase II of PREPARE 

shows a new proposal of form for RDA136. This form 

proposal simplifies the form in AIS.25 To facilitate future 

studies with live load, this form uses types of buildings based 

in uses from the valid Colombian norm. This document uses 

structural systems which are easy to identify in a sidewalk 

for RDA. The global damage classification for 

internationalization purposes only has three degrees of 

damage: habitable, restricted use, non-habitable with green, 

yellow and red respectively and without orange. 

 

City of Manizales (Colombia) based in GUÍA AIS24,80 has a 

new version of form including a field manual23 and 

procedures of RDA149. This document has specific structural 

topics for floor hard to identify like steel profile without 

shear connectors (shear stud or others). It changes year of 

construction from 1930 to 1950 and 1984 to 1982; 

qualification of collapse from yes, partial or no for total, 

superior to 50%, inferior to 50% and no; from none, mild, 

moderate, strong and severe to percentages of damage in 

different structural elements, and so on minor changes. It 

includes more discriminants for habitability, separating 

global stability, geotechnical, structural and non-structural 

threats. Risk of habitability (low, low after preventive 

measures, high and very high) depends on data filled in 

forms. This link between inserted data and final grade is not 

general in other RDAs studied, but the link is less strong with 

RVS of FEMA-15470. 

 

To support information management, fieldwork in 

evaluation, less time to collect data and to increase 

reliability, applications for tablets y smartphones have been 

developed102,188. The software with Machine Learning 

“Evaluación del Daño Sísmico en Edificios EDE” (Seismic 

Damage Assessment for Buildings) seeks to contribute to the 

solution of problems derived from different degree of 

damage in RDA for the same building40,41.  

 

Similarly, an automatic real-time system has been developed 

to assess damage in Bogotá (Colombia)38. It works with a 

network of accelerometers in rock, modelling the dynamic 

response of soil and creating accelerograms in surface, a 

probabilistic map of damages for collapse and human deaths 

and finally sends an automatic email and SMS (Short 

Message Service) to authorities with relevant information. 
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AR (augmented Reality) has been tested to assess 

damages.112,113 Training courses are held like IDIGER for 

the Grupo de Ayuda para Inspección de Edificaciones 

después de un Sismo (Inspection Assistant Group for 

Buildings after Earthquakes)104. This experience shows an 

exercise of training in RDA to the same building, with more 

than 300 engineers and architects, these results have 

important differences. The evaluators rated the general 

condition of the building with 40% restricted use and 40% 

habitable. For geotechnical problems, the evaluators rated 

with 47% with restricted use and 33% with habitable. For 

problems in non-structural elements, the evaluators graded 

the building with 42% habitable and with 38% restricted use. 

For structural damages in the more affected storey, 

evaluators graded the building with 48% restricted use and 

33% habitable. For global damage and habitability, the 

evaluators rated 46% restricted use, 21% non-habitable and 

26% habitable156. 

 

DEM: DEM is defined in ATC-2021, this methodology 

qualifies habitability in buildings19 for emergency care and 

in buildings with questionable RDA and RDA rated with 

restricted use or unsafe. It is an RVS. It has a difference with 

teams in RDA; teams in DEM have two structural engineers 

or one structural engineer plus a builder inspector. DEM is 

more detailed than RDA. RDA uses six basic criteria, but 

DEM uses 21. RDA rates the possibility of collapse and 

foundation problems with single criteria, but DEM separates 

the collapse and foundation. RDA join all damages to 

structural components and DEM separates roofs and floors, 

vertical support elements, diaphragms, walls and precast 

connections. RDA unites the hazards of falling objects, but 

DEM separates parapets, cladding, ceilings, partitions, 

elevators, stairs, electric and gas system. RDA uses a single 

criterion for geotechnical assessment, but DEM uses slope 

failures and ground movements. RDA has unique criteria for 

other not-specific problems, but DEM uses four possibilities 

of not-specific problems. 

 

A particular case of DEM is for health care-oriented 

buildings because it directly affects earthquake victims 157. 

The particular situation is the need for verification of 

structural and non-structural components in addition to 

verification of components for vital services. Results of 

DEM in hospitals, for example, may be in unusable building 

due to failures of water, gases and fire systems. The cases of 

this type of results are Olive View Hospital affected by 

earthquake of Northridge (ML 6,7) de 199427,167 and other 

cases in Chile (MW 8,8)133. 

 

Predictive RVS 
Qualitative studies of damage prediction with RVS are 

conservatives 18. The main basis of these studies is the 

information crossing between structural typologies with a 

single parameter for description of the earthquake116, usually 

peak ground acceleration160. The RVS cannot represent the 

complete characteristics of the same type building (number 

of storeys, diaphragms, architectural entrances and ledges, 

changes on materials etc.), neither more characteristics of 

earthquake (frequencies, lapse of time with strong 

movement, amplitude etc.) and nor complexity of geological 

zone and soil of foundation. 

 

The ATC for FEMA developed FEMA 154 75 and FEMA 

155 70 with different versions, these documents have been 

the support for other documents in different countries. 

Buildings evaluated under the criteria of these documents 

have a rating of zero to seven. The purpose is to identify 

possible preliminary threats for future evaluation of 

professionals experienced in seismic design or the 

estimation of good seismic performance. The forms of RVS 

according seismic zones185 with FEMA 154 characterize 

buildings in two classes, buildings with a good seismic 

performance and buildings with the need of a detailed 

evaluation for professionals experienced in seismic design. 

The threshold grade is two; buildings lower than this 

threshold have a poor seismic performance and they need to 

evaluate again for qualified personal.  

 

The evaluation process begins with a basic rate for each type 

of structure and continues to apply modifiers that increase or 

decrease the initial rate. These modifiers depend on height, 

irregularities, year of construction versus validity of rules 

and their updates. 

 

The RVS give a knowledge about seismic risk in 

buildings.8,43,135 This is a simple and effective method 

previous to earthquakes, with sidewalks with forms used for 

RDA and DEM. In this methodology personnel experienced 

and training review different aspects, age of construction, 

materials, number of storeys6, weak storeys, excessive loads, 

pounding effect, topographic effect, visual quality of 

construction9, structural typology, seismic zone, soil 

conditions, plane and vertical irregularities, short column 

etc. These kind of studies include data collection to manage 

risk134. Sidewalks surveys and numerical models of different 

types of structures are the basis for ratings on this 

methodology. 

 

Including the year of construction in this methodology is due 

to the increased risk when the population in the houses 

increases before the building codes111. Victims of more than 

1100 strong earthquakes in XX century are more than 

million and half, more of them for collapsed buildings with 

more than 90% of direct deaths115. It has a clear relation of 

the fact that buildings before construction codes do not have 

seismic provisions171 and that these buildings are responsible 

for the most part of victims and damages196. 

 

Riaño et al164 showed a study with future utility for 

Predictive RVS, it has a 3D simulation in a big scale of earth 

crust of 100x50x18,75 Km3 around Bogotá D. C. 

(Colombia). It uses a distribution of Vs, scenario with 

earthquake Quetame (ML 5,7173), a model of digital elevation 

with 30m of resolution or ground sample distance. The 

calculus was made with a supercomputer with 19.200 
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processors, for more than de 665 million of nodes and more 

than 626 million of finite elements of size of minimum 10 

m. 

 

Montaña138 showed an academic exercise of estimation 

damages for Bogotá D. C. (Colombia). It is a probabilistic 

analysis of earthquake occurrence and the probability of 

damages to typical structures in that city versus earthquake 

magnitude ranges.  

 

Probability damage is an adaptation of Hazus77, the 

exposition model is an random distribution with cadastre 

information in ranges. These ranges are previous to CCCSR-

84163 (70%) from 1985 to 1999 (20%) and posterior to 1999 

(10%). 

 

Miyamoto135 for city of Pasto used two scenarios (day and 

night), peak ground acceleration of 0,25g, exposition model 

with 36 homogeneous zones and 22 special buildings, eight 

structural types with fragility curves similar to Hazus77 and 

Openquake191. Estimations are 31% and 29% of buildings 

with a rate of insecure with labels in yellow and red. This 

percentage represent around 30.500 and 28.000 buildings 

respectively. 

 

Herrera et al98 showed an analysis for Valle de Aburrá 

(Colombia), It has six seismic scenarios with different 

intensities, hypocenters, geological failures, magnitudes 

6,05 to 7.86 and vulnerability curves for types of structures. 

Results with more critical scenario have 1’0324.588 

homeless people and 331.100 buildings with moderate and 

severe damages. 

 

Damage assessment with imagery 
Emergency answer and safety assessment have support in 

data, their visualization in 3D representation with 

geolocalization and sequence76. Kortowo campus of Warmia 

and Mazury University (Poland) has a 2 km2 test field to 

assess the accuracy of the image measurements. Testes were 

performed with camera Phase One iXU-RS 1000 of 101 MP 

and the Light Detection and Ranging (LiDAR) Riegl LMS-

Q680i to 400 kHz with pulses NIR with 25 pts/m2. The fly 

altitude was 220 m over ground and a ground sample 

distance (GSD) of 2 cm. The accuracy achieved in terms of 

root mean square error was 3,2 cm for images with camera 

Phase One and less than 2 cm for LiDAR84. 

 

Sources for generating images: Satellites contribute 

terrestrial views for assessment and prediction of natural 

hazards7,33,46,89, but it pays little attention to the development 

of methodologies to detect minor damages in buildings121. 

Examples of use of this kind imagery are the earthquake in 

Ban (Iran) in 2003189, other uses being for natural hazard 

with VIEWS™ system.3,88,128 

 

Synthetic Aperture Radar (SAR) images combine 

information from many scans creating a “single virtual 

scan”, it uses Differential Interferometric and Persistent 

Scatterer Interferometry techniques to improve  accuracy53. 

The advantages of SAR over optic sensors are that SAR does 

not depend on light and atmospheric conditions78. 

 

LiDAR images are analogue to radar65, but using laser. Its 

use is associated to temporal-space detection of changes in 

3D with high precision150. It needs data in different moments 

to classification. The ecology classifies the works in multi-

temporal if moments have a time of difference greater than 

one month and hyper-temporal if the time of difference is 

less66. The best precision vertical/ horizontal register by 

Glennie90 is 5/20 cm and 15/75 cm for airplanes flying at 500 

m and 3.000 m altitude respectively90; this accuracy may 

improve if the altitude is lower like in UAS. 

 

Red Green Blue (RGB) images are captured in the visible 

electromagnetic spectrum with wavelength of 0,4 to 0,8 μm. 

These images in a digital form have assigned a model of 

“colour” perception where each pixel is formed with a triplet 

with components red, green and blue.48,158 For a different 

use, RGB is generally  transformed to other non-perceptual 

models like HSV, HSB, HIS and a new RPT proposal56. 

 

RGB-Depth (RGB-D) images combine colour information 

from RGB sensors with distance information from laser 

measurements. These images are also called time-of-flight-

based (ToF) in small devises like 

smartphones.26,32,63,81,106,107,110,114,131,143,193,194 Multispectral 

images have information from different ranges of 

electromagnetic radiation, generally combine visible 

radiation with other infrared and ultraviolet radiation.130,154 

 

Visual interpretation technique: This technique uses 

satellites or aerial imagery, data, GIS system and 

experienced human operators. It require long process180 so 

this methodology is not part of the RDA technique. 

 

Lei et al117 demonstrate the use of high-resolution aerial 

imagery, visual interpretation and interpolation for collapsed 

houses in the Wenchuan earthquake (China M=7,9108). It 

reports collapsed houses when the situation is difficult to 

repair. Despite the high-resolution images, it is possible to 

identify collapsed houses, but is difficult to identify the 

degree of damage. This work gives credibility to the 

precision in the visual interpretation because the computer 

interpretation at the time was in an exploration stage.  

 

Automatic interpretation techniques: Automated machine 

learning with supervised and unsupervised (self-

organization) techniques123 is the common process for 

damage assessment and image-based object classification31. 

Gümüşbuğa95 shows UAS technologies for disaster 

emergency response, aerial traffic needs, aircraft selection, 

algorithms for real time aerial-routs and training for 

personnel in simulated scenarios. 

 

Hermosilla and Ruiz97 proposed and compares building 

detection methods for image-based object classification with 
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thresholds and shadows in buildings. It includes a 

complexion index to measure the percentage of real 

buildings that are in the same place with automatic detection 

of buildings in urban and industrial areas. Index reaches 

100%, which is very important for RDA with automatic 

interpretation, because the data extracted from the images 

should assign to the same building85. 

 

Techniques with previous and posterior earthquakes 
images: It is important to consider that with images with 

different dates, there could be changes in the elements such 

as demolitions, dismantling and repairs126. Furthermore, if 

UAS is used, the morphology of the study area is important 

for optimal flight planning64. 

 

Gamba et al85 showed analysis of RADATT project67 due to 

RADATT which is geared towards estimates of the extent of 

earthquake damage. Some problems encountered are that a 

simple image comparison is not robust enough for the 

presence of noise, different light and weather conditions and 

the position of the sensor. The procedure includes the 

detection of collinear edges, the grouping of edges with 

intersection around 90° and configuration of the outline to 

represent hypothesis of quadrangular buildings. This 

methodology was satisfactory in earthquakes of Irpinia (Italy 

Nov. 23th, 1980 M=6,0108), Umbria (Italy Oct., 1997 to May, 

1998 M=6,0 108) and Egión (Greece June 15th, 1995 Ms=6,3 
108)176. 

 

Tong et al177 used high resolution stereo images from 

satellite IKONOS17 with GSD of 1,1 m in ground and 

precision of 1,5 m in altitude. This methodology proposed 

estimates of the areas of damage using the vertical 

component. It manages to detect a collapsed individual 

building. In addition, it manages to detect how many storeys 

have collapsed. The study area was Dujiangyan (China) 

affected by earthquake Wenchuan in 2008190. 

 

Tu et al179 compared the semantic features in WorldView-2 

satellite imagery scenes to 50 cm of pixel87 of an earthquake 

using Support Vector Machines (SVM). This method was 

used on Longtou Hill in Yunnan (China) affected by the 

Ludian earthquake (Ago. 3, 2014 Mn 6,1)30. 

 

Matsuoka and Nojima126 showed a damage analysis method 

based on seismic intensity functions for Japan, images 

before and after earthquake with 30 m of precision from 

ALOS satellite. ALOS uses SAR and human ground damage 

assessors. Results on the correlation and backscatter 

difference at 2.000 random pixels for each zone with 

different damage rates were assessed on the ground by 

human assessors in the Kobe earthquake (1995). It also 

applies the model with good results to the images of the same 

satellite in Pisco (Peru) after earthquake (2007). 

 

Tu et al180 showed a method for different degrees of damages 

using GIS with satellite imagery before earthquake. It 

generates vector buildings with area and height; it compared 

previous earthquakes images with posterior earthquakes 

images. It calculates height with shadows detection and it 

estimates damage with roof texture with an SVM. This 

method was tested with good performance in Beichuan 

(China), correlating with another method show in Tong et 

al.178 

 

Adams and Huyck4 described the use of the methodology 

developed to be applied in Marmara (Turkey) with moderate 

resolution images, but it was applied in Bormedes (Algeria) 

and Bam (Iran) with submetric high resolution images from 

the IKONOS satellite. 

 

Techniques with only posterior images: These techniques 

detect damage-building zones based on the extraction of 

images features only with post-earthquakes images and 

GIS180. Dong et al62 used of identification of two patterns of 

straight lines (mean length and slop) in 2D images. This 

could have different degrees of damages in specific 

“windows” (image sector) analysed. 

 

Li et al121 detected holes in rural houses caused by 

earthquakes using supervised machine learning with only 

posterior earthquakes images. The images were taken from 

UAS. Hua et al100 showed collapsed buildings using imagery 

from UAS and give recommendations for assign the limited 

resources for rescue process. 

 

Li et al119 detected building collapse using high sub-metric 

vertical resolution images, morphologic texture and spectral 

information to characterize debris of collapse of built-up 

structures. It was tested in Jiegu Country (China) affected by 

earthquake Yushu30; it shows effectiveness for fast 

detection, but there is no validation with more images for 

different areas with more scenes with different degree of 

damage. 

 

Li and Tang120 used spectral and morphologic information 

with images from UAS and external shape vectors from 

previous high-resolution satellite images and manual 

interpretation. It classifies buildings as almost intact, slight 

damage, partial collapse and totally collapse. It has 

simulations with earthquakes in Wenchuan (China 

M=7,9108) and Ya’an (China M=6.6108) for verification with 

good results. 

 

Techniques with DSM comparison: DSM generally comes 

from laser measurements, 2D or stereo images matching, 

traditional surveying and blending of them. Pang et al152 

classified objects into buildings and non-buildings based on 

the gradient histogram (HODOL). Buildings show regularity 

in HODOL diagram and other objects show irregularity. 

This study is not intended to detect damage, but its ability to 

distinguish between buildings and non-buildings could be 

used in automatic urban image analysis. 

 

Liu et al122 used LiDAR and 3D-shape signature. It 

calculates 100.000 times in each type building from random 
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exterior points. It uses distance, slope, area, volume, aspect 

and Delaunay Triangulation2 in isolated buildings with four 

roof types. 3D-shape signature comes from histograms with 

50 intervals of each parameter. It uses 0.99 as a threshold 

between damaged building and not damaged buildings. This 

technique could continue developing for RDA, especially for 

isolated buildings without DSM before earthquake. 

 

Other techniques for damage assessment 
After RDA and/or DEM, these could have numerical model 

structural engineering studies performed by more 

experienced staff. Quantitative engineering studies in 

buildings non instrumented are known as seismic 

vulnerability. These studies are based in FEMA 15472, 

FEMA 31073 and updates of ASCE 41-1712 and the FEMA 

17844. In general, these studies seek to establish a level of 

seismic performance. It could start with an RVS-like 

verification with experienced engineers and subsequent 

phases need foundation-soil and material testing, lineal and 

no lineal numerical models195, static and dynamic analysis168 

and others. To establish typical budget to repair one could 

use FEMA 15674 and FEMA 15796. Recommendations of 

structural repairs could use FEMA 35613, FEMA 27334 and 

FEMA 27435. 

 

Colombian engineering studies for buildings with moderate 

and severe damages must follow the rules shown in 

Reglamento NSR10 (seismic Colombian code)162, specially 

chapter A.10; alternatively these studies could based on 

ASCE 41-0614 updated in ASCE 41-1715, FEMA-35613, 

ATC-4020 and ASCE 41-1316. 

 

The safety levels defined in FEMA 35613,140 and FEMA 

31073 refer to performance for immediate occupancy, safety 

of life and prevention of collapse over a 50-years life cycle. 

The specific hazard is a probability of exceedance in 50%, 

20%, 10% and 2%. In contrast, RDA and DEM give a 

habitability recommendation without characterizing hazard. 

 

Structural Health Monitoring (SHM) are studies with 

buildings instrumented for damage assessment. Marulanda 

et al124 identified the damage with changes on static and 

dynamic structural characteristics, model analytically the 

global behaviour and interpret data, but this technique does 

not do destructive test36. Doebling et al60 showed that SHM 

methods use changes in natural frequencies, modal shapes, 

dynamic measures of flexibility and update of the stiffness 

matrix. Doebling et al61 defined the pre-earthquake state as 

an initial state without damage. Conclusion details are level 

1 for damage existence, level 2 for localization of damage, 

level 3 for severity and level 4 for remaining cycle life. With 

a SHM implemented before the earthquake and operating 

after the earthquake, it is possible to automate the 

interpretation of data in real time and allow it to be included 

as a non-RVS-based RDA technique. 

 

The International Search and Rescue Advisory Group 

(INSARAG) created in 1991 by the Urban Search and 

Rescue (USAR) teams includes guidance documents for the 

preparation, cooperation and coordination of assistance in a 

disaster area with structural collapse145. Structural 

evaluation required for INSARAG is for scope, location and 

type of damages for the rescue of alive victims, but it is not 

for establish habitability as RDA does. USAR groups, also 

known as BREAC129, are under cover OCHA182. They do 

activities for administration, search, rescue, medical 

assistance and logistic assistance.  

 

Guides INSARAG147 establish a requisite for USAR teams 

in levels Median and Heavy, a member known as structural 

engineering.146,148 This member must provide practical 

solutions for structural instability, structural safety and how 

unsafe structure becomes safe, monitors and coordinates 

implementation to shore up and remove structure layers. 

Technologies for technical rescue are being developed and 

are part of calculation tools for aftershocks with residual 

structural capacity (observed damage versus remaining 

capacity)71.  

 

A relevant case supporting the for these technologies is the 

collapse of World Trade Center in New York (11S) in 2001 

where 343 members of the Fire Department of New York 

lost their lives51,183, part of the 3.000 deaths1. Despite search 

and rescue is the “speciality” with the most technological 

advances and more attention for USAR teams54, the Twin 

Towers collapsed over rescue personnel, but rescuers did not 

have information about remaining structural capacity of 

affected structures. 

 

Conclusion 
RDA with years of construction based on validity of the 

seismic codes shows direct contribution in estimation of 

seismic performance of buildings.  The data from RDA 

forms are systematizable. It is useful for future 

recommendations in seismic structural analysis and design 

and good practices construction techniques. Results show 

that the RDA can be used in training of machine learning to 

contribute to appropriate decision making. 

 

RVS-based RDA is an excellent tool for non-habitability 

decision making for earthquakes-affected buildings with 

visible structural problems. It saves lives and defines the 

demolitions necessary to prevent future casualties by 

aftershocks. However, for buildings with important-loss of 

seismic capacity, but not obvious, RVS-based RDA does not 

warn of the danger of loss of life in aftershocks. Personnel 

not properly trained to develop RDAs, evaluating buildings 

with no apparent earthquakes deterioration, will not ensure 

that meeting the criteria of two RDAs in the same building 

with different evaluators had the same basic conclusion.  

 

Collecting and analysing aerial and/or satellite image 

measurements data could contribute as an alternative RDA 

method of determining habitability in earthquake-affected 

buildings. A problem in the assessment of earthquake 

damage with previous and subsequent images is that if the 
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acquisition dates are distant, there could be change in the 

buildings evaluated. Although the previous and posterior 

imaging methods show better results than the posterior 

imaging only methods, many areas with no previous imaging 

or low-resolution previous imaging require posterior 

imaging-only methods. 

 

SHM-based RDA contributes to disaster prevention when it 

detects damage in a timely manner and becomes an excellent 

RDA technique for emergency care buildings because its 

methodology takes a relatively short time to obtain reliable 

results. The RDA carried out by USAR teams does not 

intend to conceive habitability, but needs a study of the 

remaining resistance in collapsed buildings or in buildings 

with severe damages. 
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