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Abstract  
Low-grade gliomas LGGs are invasive brain tumors 

that occur mostly among young adults. Previous 

studies have shown that LGGs are characterized by 

IDH1/2 mutations; however, in some cases, cancer 

patients suffer from the low mutation rate of such 

genes. In this study, HspB8 is proposed as a new 

biomarker. On the basis of F-Census, HspB8 was 

correlated with gliomas; however, its role is yet to be 

determined. This study aims to identify the expression 

of HspB8 and its corresponding miRNA among LGG 

patients and assess its potential as a biomarker. The 

expression data are derived from The Cancer Genome 

Atlas (TCGA) project and are downloaded using TCGA 

Assembler. Then, HspB8–miRNA expression 

correlations and meta-analyses are conducted using 

MATLAB.  

 

Results are validated via transcriptome analysis 

including miRNA-target side prediction and molecular 

docking simulation by RNAhybrid and PatchDock 

respectively. Results show the strongest negative 

correlation peaks at −0.417 (p value <0.05) found 

between HspB8 and mir-92a-1. Further transcriptomic 

validation also supports the interaction between the 

two RNA molecules denoted by negative free energy. 

However, their roles could not be validated due to the 

lack of research. Therefore, the results of this study 

might become a basis for further studies. 
 

Keywords: Biomarker, HspB8, low-grade glioma, 

microRNA, transcriptomic. 

 

Introduction 
Low-grade gliomas LGGs diffusely infiltrate low and 

intermediate-grade gliomas including WHO grade II and III 

astrocytic tumors, oligodendrogliomas, and diffused gliomas 

(oligodendrogliomas)7,28. LGGs cannot be completely 

removed via surgery because of their invasiveness; the 

residual tumor may reoccur and become malignant causing 

the patients to experience tumor-related complications and 

even death28,36.  

 

According to Packer and Schiff36, approximately 2,000 

adults in the United States are diagnosed with LGGs each 

year and the male-to-female ratio is 1.58:111. LGGs are 

particularly fatal for young adults and the average survival 

rate is 7 years11. Therefore, the pathogenesis of LGGs, 

particularly its biomarkers, must be studied. Biomarkers are 

measurable indicators of biological processes that 

objectively describe the normal and abnormal states of 

organisms16,41.  

 

In terms of diseases such as cancer, biomarkers differentiate 

the condition between cancer and healthy patients19. 

Biomarkers are disease specific (i.e. every biomarker is 

correlated with a certain disease); its identification has 

become an important aspect in developing personalized 

medicines46. Biomarkers have various types including gene 

and microRNA (miRNA) expressions19. Previous studies 

have shown that LGGs are denoted by mutations on 

isocitrate dehydrogenase (IDH) 1 and 2 genes35. Moreover, 

LGGs are acquired during early gliomagenesis followed by 

TP53 mutation or 1p/19q loss causing astrocytic or 

oligodendroglial phenotype respectively. However, the 

frequency of IDH1/2 mutations is yet to be defined because 

a low mutation rate of IDH1 has also been found among 

LGG patients14. 

 

These results show the limitations of proteomic-based 

studies particularly with the emergence of the 

transcriptomic-based ones30. As proteins mark the end of the 

central dogma, it undergoes many regulations. For example, 

more than 90,000 individual post-transcriptional 

modifications of proteins have been identified22. However, 

these regulations do not necessarily increase the inferred 

information4. In prokaryotes, the system has become 

saturated; the regulatory cost has become so high that it 

limits further genomic and functional regulations30. In this 

case, transcriptomic studies may become useful. RNA 

molecules also play an essential role in gene expression 

regulation18; therefore novel information which could not be 

obtained by proteomics, particularly in cancer pathology, 

can be unveiled. 

 

In this study, we propose heat shock protein B8 (HspB8) as 

a new possible biomarker. HspB8 is a member of a human 

small heat shock protein (HSP) family that shares common 

features with HspBs such as stress inducibility and 

chaperone activity8. Previous studies32,33 supported by the F-

Census database15 have shown that HspB8 is correlated with 

gliomas; however, its role as an oncogene or tumor 

suppressor gene (TSG) is yet to be determined. With the lack 

of research on HspB8 regulations in LGG, the transcriptomic 

approach might become useful. In this case, we correlate the 

expression of the gene and each type of human miRNA.  

 

MiRNAs are small noncoding RNAs that generally 

downregulate its target gene by binding at the 3′ untranslated 
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region (UTR) of the gene21. If a strong negative correlation 

is obtained from the correlation analysis, then a direct 

association between HspB8 and its respective miRNA may 

exist in LGG; this information can be utilized in further 

research particularly in developing transcriptomic-based 

drugs. Our computational lab has developed a pipeline that 

combines correlational annotation and RNA structure 

elucidation studies to comprehend the mechanistic insight 

into miRNAs1,37. 

 

Moreover, the regulation of miRNA-regulated genes 

including the translation process and mRNA stability is also 

affected by argonaute (AGO) proteins20. AGO proteins are 

major constructors of RNA-induced silencing complex 

(RISC)43. AGOs comprise four domains: N-terminal, PIWI, 

PAZ, and MID; the latter two anchor the 3′ and 5′ ends of 

miRNAs respectively and guide it into SIRC. Then, the 

AGO-centered RISC binds to the 3′ UTR of the target 

mRNA, thereby inhibiting the translation process24.  

 

On the basis of this idea, assessing the binding feasibility 

between miRNAs, mRNAs, and AGO proteins is crucial. To 

perform such assessment, the molecular docking between 

the miRNA–mRNA duplex and the AGO protein becomes 

an option. By looking at the structures of the RNA and the 

protein, we can determine whether the interaction is likely to 

happen.  

 

Based on The Cancer Genome Atlas (TCGA) dataset, this in 
silico study aims to identify the expression and feasibility of 

HspB8 with its corresponding microRNA (miRNA) among 

LGG patients, thus unveiling the potential of miRNA-

regulated HspB8 as a biomarker in LGGs. 

 

Material and Methods 
A. Pre-study: The role of HspB8 (Entrez Gene ID: 26353) 

in LGGs was taken from the F-Census database15 by 

searching the cancer genes on the basis of the cancer type 

(i.e. central nervous system). 

 

B. Datasets: The dataset was derived from the TCGA 

project and stored in the GDC Data Portal17. In this analysis, 

the TCGA-LGG dataset was used. 

 

C. Data Pre-processing: First, the metadata of the gene and 

miRNA expression datasets were downloaded from the 

GDC data portal. The keywords for retrieving the gene 

expression data are as follows: brain (primary site), TCGA-

LGG (project ID), HTSeq–FPKM-UQ (workflow type), 

transcriptome profiling (data category), gene expression 

quantification (data type) and races (i.e. white, black or 

African–American and others). In this case, the keyword 

“others” comprises Asian, American–Indian or Native 

Alaskan and not reported.  

 

The keywords for retrieving the miRNA expression data are 

as follows: brain (primary site), TCGA-LGG (project ID), 

transcriptome profiling (data category), miRNA expression 

quantification (data type), and races. The other parameters 

were left unchecked. As a result, six metadata files namely 

white-gene, black-gene, other-gene, white-miRNA, black-

miRNA and other-miRNA were obtained. Then, the files 

were converted into CSV file format by using JSON to CSV 

converter31 as a matter of preference. 

 

Next, the metadata were imported into Python 3.6. As every 

patient is denoted by specific barcode (ID), the first 15 

characters of all TCGA IDs from all metadata, which were 

patient-specific, were extracted and added into different 

lists. Then, the lists with the same race were matched: IDs 

that appear in both lists were retrieved. As a result, a list of 

IDs (patients) whose gene and miRNA expression data were 

available, was obtained. 

 

These IDs were then input into TCGA Assembler 2.0.542,45, 

an R code implementation for downloading gene and 

miRNA expression data. In this case, only the first 12 

characters of the ID were input, as required by the program. 

After the data were downloaded, they were imported into 

Microsoft Excel 2010 and saved in XLSX format. 

 

D. Correlation Analysis: The gene and miRNA expression 

data from cancer patients were imported into MATLAB 

R2018a due to the unavailability of healthy patient data. 

Then, Spearman’s correlation test was conducted between 

the HspB8 gene and every miRNA expression for each race. 

The HspB8–miRNA interactions with a Spearman’s rho (R) 

and significance (p) value lower than −0.2 and 0.05 

respectively were retrieved. 

 

E. Meta-analysis: The significant gene-miRNA 

correlations that were found in all races were retrieved. 

Then, a meta-analysis was conducted on the basis of the 

fixed effects model6 in MATLAB R018a. The strongest 

miRNA-regulated HspB8 was retrieved for validation. 

 

F. Transcriptomic Validation: The sequences of the 

miRNA and 3′ UTR of the HspB8 mRNA were retrieved 

from the miRTarBase database10. The mature miRNA 

sequence was retrieved from the “Mature miRNA 

Information” column of one of the respective miRNA entries 

whereas the 3′ UTR of HspB8 was derived from the “Gene 

Information” column under the “Target Gene” tab of entries 

with HspB8 as the target gene.  

 

Then, the miRNA-target site was predicted using 

RNAhybrid38. Afterward, the secondary and tertiary 

structures of the miRNA, gene, and miRNA–mRNA duplex 

were visualized using RNAfold26 and simRNAweb 

respectively.5,29 

 

Lastly, the miRNA–mRNA duplex was docked with AGO 

proteins (PDB ID: 3F73, chain A) using PatchDock 

server13,39. All analyses were performed under the default 

parameters of each software2,27,29,44. The complete procedure 

of the study is shown in figure 1. 
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Fig. 1: Flowchart of the procedure, Red: data preprocessing, orange: correlation analysis, green:  

meta-analysis, blue: transcriptomic validation 
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Results and Discussion 
In this study, the gene and miRNA expression metadata were 

divided into three groups on the basis of races: white, black 

or African–American, and others. Such division was 

performed to ensure that miRNA-regulated HspB8 was 

found among all LGG patients regardless of their races. The 

grouping was set on the basis of the assumption that white 

and black represented two opposite poles of skin colors 

whereas others were located in between. Initially, 487–488, 

21–22, and 19–19 gene-miRNA expression data for white, 

black, and others were respectively obtained.  

 

After the gene and miRNA metadata were matched, 482, 22, 

and 18 patient IDs (files) were found among white, black and 

other samples, respectively. This matching process was 

essential because the patient must have the gene and miRNA 

expression data to be included in the correlation analysis. 

These patient IDs were used as input in the TCGA 

Assembler which later downloads the gene and miRNA 

expressions of each patient. 

 

Based on the correlation analysis, we found 20, 47, and 34 

significant negative correlations between miRNA and 

HspB8 that were presented in black, white, and other races 

respectively. The ten strongest correlations from each race 

were shown in tables 1, 2 and 3 respectively. As we aimed 

to propose a miRNA-regulated biomarker that applies for all 

races, only correlations that appeared in all the races were 

retrieved (Table 4). The summary correlation value for every 

association was determined by conducting meta-analysis on 

the basis of the fixed effects model. This model was selected 

because the number of samples between groups differed 

considerably6. The results are shown in table 5. 

 

According to table 5, mir-92a-1 had the strongest negative 

correlation with HspB8. However, this association could not 

be found in miRTarBase indicating that it is yet to be 

validated. To assess the feasibility of this interaction, we 

conducted transcriptomic validation. 

 

After retrieving the sequences of the miR-92a and 3′ UTR of 

HspB8 from miRTarBase, we predicted the miRNA-target 

site by using RNAhybrid. On the basis of the result (Figure 

2), binding was observed between HspB8 mRNA and miR-

92a at the 385th position of the UTR region. This binding 

was denoted by 14 pairing nucleotides on the second and 

third lines (yellow-highlighted areas). Nucleotide bindings 

happen due to the hydrogen bonds between the C–G (three 

bonds) and A–U (two bonds) of the interacting nucleotides.  

 

Table 1 

Top 10 most significant HspB8–miRNA negative correlations in LGG (black and/or African–American Race) 
 

miRNA Rho Correlation Value P value 

hsa-mir-7112-2 −0.588 <0.05 

hsa-mir-9-3 −0.573 <0.05 

hsa-mir-93 −0.539 <0.05 

hsa-mir-4705 −0.538 <0.05 

hsa-mir-6870 −0.516 <0.05 

hsa-mir-548f-4 −0.508 <0.05 

hsa-mir-6862-1 −0.485 <0.05 

hsa-mir-9-1 −0.483 <0.05 

hsa-mir-9-2 −0.479 <0.05 

hsa-mir-4701 −0.478 <0.05 

 

Table 2 

Top 10 most significant HspB8–miRNA negative correlations in LGG (white race) 
 

miRNA Rho Correlation Value P value 

hsa-mir-130b −0.416 <0.05 

hsa-mir-92a-1 −0.403 <0.05 

hsa-mir-301b −0.382 <0.05 

hsa-mir-19b-1 −0.341 <0.05 

hsa-mir-17 −0.331 <0.05 

hsa-mir-4746 −0.314 <0.05 

hsa-mir-15b −0.313 <0.05 

hsa-mir-19a −0.294 <0.05 

hsa-mir-16-2 −0.293 <0.05 

hsa-mir-19b-2 −0.293 <0.05 
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Moreover, the minimum free energy of the binding was 

−23.6 kcal/mol showing a favorable interaction. However, 

the p value was 1.00, which was not significant. Therefore, 

further analysis was conducted. In addition, the sequences 

from figure 2 are shown in table 6. 

 

Based on table 6, we predicted the secondary structure of all 

RNA molecules by using RNAfold. Then, the dot-bracket 

notations (Table 7) were input into simRNAweb to predict 

the 3D structure of the RNAs. The secondary and tertiary 

structures of the RNAs are shown in figures 3 and 4 

respectively. Lastly, the miRNA–mRNA duplex molecule 

was docked with AGO proteins, a significant player in the 

mRNA silencing process by using the PatchDock server. 

The first docking model was then retrieved; the statistical 

analysis and visualization are presented in table 8 and figure 

5 respectively. 

 

A previous study showed that Hsp22 (HspB8/Hsp11) 

exhibits an antiproliferative property in human glioblastoma 

cells33; the knockdown of Hsp22 (HspB8/Hsp11) increases 

the expression of Sam68 (Src-associated protein in mitosis 

68 kDa) and enhances the proliferation of glioblastoma cells. 

However, based on Firebrowse (http://firebrowse.org/), 

HspB8 expression in LGGs is the fifth highest among all 

types of cancer. Generally, the expression of TSG is higher 

in specific tissues where the repression activity is needed34 

resulting in an opposite effect for oncogenes. If this is the 

case, then HspB8, instead of TSG, should be an oncogene. 

 

Table 3 

Top 10 most significant HspB8–miRNA negative correlations in LGG (other races) 
 

miRNA Rho Correlation Value P value 

hsa-mir-92a-1 −0.725 <0.05 

hsa-mir-19b-2 −0.701 <0.05 

hsa-mir-20a −0.695 <0.05 

hsa-mir-19a −0.692 <0.05 

hsa-mir-181a-1 −0.686 <0.05 

hsa-mir-503 −0.657 <0.05 

hsa-mir-4254 −0.634 <0.05 

hsa-mir-130b −0.616 <0.05 

hsa-mir-17 −0.612 <0.05 

hsa-mir-3140 −0.612 <0.05 

 

Table 4 

Significant HspB8–miRNA negative correlations in LGG (all races) 
 

miRNA 
Rho Correlation Value 

P value 
White Black Other 

hsa-mir-92a-1 −0.403 −0.440 −0.725 <0.05 

hsa-mir-181b-2 −0.259 −0.434 −0.501 <0.05 

 

Table 5 

Results of meta-analysis with 95% CI 
 

miRNA 𝑳𝑳𝒓
a 𝒓b 𝑼𝑳𝒓

c P value 

hsa-mir-92a-1 −0.343 −0.417 −0.486 <0.05 

hsa-mir-181b-2 −0.192 −0.273 −0.351 <0.05 
                                                                         a. Lower limit, b. Correlation summary, c. Upper limit 

 

Table 6 

Sequences of miR-92a and its predicted target site on HSPB8 mRNA 
 

RNA Sequences 

Mature mir-92a-1 AGGUUGGGAUCGGUUGCAAUGCU 

Predicted miRNA-target site 
ACCAAACCCUCGGUACCCUUAGCCCUCG

G 

miRNA–mRNA duplex 
CGUAACGUUGGCUAGGGUUGGAACCAAA

CCCUCGGUACCCUUAGCCCUCGG 
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Table 7 

Secondary structure of RNA molecules 
 

RNA Dot-bracket Notation MFEa (kcal/mol) 

Mature mir-92a-1 ..((((.((....)).))))... −1.90 

Predicted miRNA-target site ......((...(((.......)))...)) −2.10 

miRNA–mRNA duplex .....((..(((((((((....(((........))))))).)))))..)). −17.90 
                         a. Minimum free energy 

 

 
Fig. 2: Prediction of the miR-92a binding site on the 3′ UTR of the HspB8 mRNA—the second line is part of the first 

line (HspB8), and the third line is part of the fourth line (miR-92a); the interacting nucleotides are placed near each 

other and are highlighted in yellow; U: uracil, A: adenine, G: guanine, and C: cytosine 

 

 
Fig. 3: Secondary structure of RNA molecules—A: miR-92a-1, B: miRNA-target site of HspB8, and C: miRNA–

mRNA duplex; the colors denote the conserved region with respect to the structure on the basis of the base-pair 

probability parameter from 0 (blue) to 1 (red) 

 

 
Fig. 4: Tertiary structure of RNA molecules—A: miR-92a-1, B: miRNA-target site of HspB8, and C: miRNA–mRNA 

duplex; the molecule was visualized using using Discovery Studio Visualizer 2017 
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Fig. 5: Docking result between the miRNA–mRNA duplex with AGO protein. The molecule was visualized  

using Discovery Studio Visualizer                      

 

Table 8 

Docking scores between miRNA–mRNA duplex with AGO protein 
 

Molecules Score Area ACEa Transformation 

miR-92a-1 and HspB8-

AGO 
20956 3219.30 −643.69 1.66 0.69 1.36 16.61 6.30 31.48 

                      a. Atomic contact energy 

 

Mature miR-92a regulates human embryonic stem cell 

differentiation and plays a role in the development of 

mammalian organs and even in the formation of blood 

vessels25. A previous study showed that miR-92a is 

overexpressed in glioblastoma cells but lowly expressed in 

glioma stem-like cells40. Glioma stem-like cells are cancer 

cells found in glioma cells and play an important role in 

tumor recurrence and sensitivity against treatment23. Song et 

al40 showed that miR-92a can act as oncogene and TSG. As 

an oncogene, it downregulates the CDH1/β-catenin 

signaling pathway, thus increasing the cellular invasiveness 

and metastatic activity of cancer cells. It also downregulates 

the expression of notch proteins correlated with cancer 

metastasis and angiogenesis.  

 

Multiple functions of miR-92a and HspB8 were found; thus, 

we could not determine the regulation of their interaction in 

LGGs. Two mechanisms of action are possible because the 

gene and miRNAs were negatively correlated. These 

mechanisms are as follows: miR-92a is upregulated and 

promotes cancer growth whereas HspB8 is downregulated 

and represses cancer metastasis or the opposite (i.e. miR-92a 

acts as TSG and HspB8 acts as an oncogene). 

 

The importance of HSP families in cancer development was 

described by Chatterjee and Burns9. In eukaryotes, HSPs 

primarily act as a molecular chaperone facilitating and 

maintaining the folding of proteins. Cancer cells often 

consist of misfolded oncoproteins, thus requiring HSPs to 

perform the correction. As a result, HSPs are found to be 

highly expressed in cancer. One of the most studied HSPs is 

Hsp90, which is correlated with several types of cancer such 

as lung12 and medulloblastoma3. The inhibition of this 

particular HSP has produced preclinically promising 

results9, meaning that comprehensive HSP studies including 

those of HspB8, are essential to uncover potent therapeutic 

treatments for cancer. 
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In this study, the dataset was limited to the one that is 

available in TCGA. No data for healthy patients were 

available. Moreover, the number of samples between groups 

(races) was significantly different. However, we could not 

perform meta-analysis based on the random effects model 

because the samples were dominated by one group6. In the 

future, additional data will be beneficial to strengthen the 

results. 

 

Conclusion 
HspB8 and miR-92a-1 were found to be significantly 

correlated among LGG patients with an intermediate 

summary correlation value of −0.417 (p value <0.05). 

Supported by transcriptome analysis and previous studies, 

this miRNA-regulated gene provided the basis for a novel 

potent LGG biomarker for further wet lab studies or for 

conducting a thorough molecular dynamic simulation in 

high-performance computers to examine the biochemical 

reaction mechanism in a fine-grained manner. 
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