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Abstract 
Lung adenocarcinoma is one of the leading causes of 

cancer-related deaths in the world. Recent research 

has shown that microRNAs (miRNAs) as gene 

expression regulators are effective in cancer therapy. 

This study aimed to identify differentially expressed 

miRNA–gene pairs in patients with lung cancer, 

particularly Caucasians, by using data retrieved from 

The Cancer Genome Atlas. Data were subjected to 

statistical and correlational analysis to identify 

differentially expressed miRNAs, genes and their 

subsequent pairs.  

 

Results were confirmed by matching them with those in 

miRNA databases: miRTarBase and miRDB. The 

miRNAs that likely have the potential to be targets in 

cancer therapy were mir-143, mir-4652, and mir-135b. 

Future studies may incorporate molecular docking to 

further explore the miRNA–gene interactions 

discovered in this study. 
 

Keywords: Caucasian, lung adenocarcinoma, microRNA, 

TCGA. 

 

Introduction  
Lung cancer is one of the most prevalent cancers worldwide; 

it is the leading cause of cancer-related deaths in males and 

second in females. Approximately 17 % of new cancer cases 

and 23 % of cancer-related deaths can be attributed to lung 

cancer8. Lung cancer can be divided into two categories, 

namely, small cell lung cancer and non-small cell lung 

cancer (NSCLC). NSCLC is further divided into three 

pathological subtypes: squamous cell carcinoma, 

adenocarcinoma, and large cell carcinoma. Among them, 

adenocarcinoma has the highest prevalence accounting for 

38.5% of the total lung cancer cases5. Lung adenocarcinoma 

(LUAD) can be identified on the basis of mucus formation 

or the following growth patterns: glandular/acinar growth, 

papillary differentiation, or a single layer spread along the 

alveolar septum and bronchioles16. 

 

Race and ethnicity have been proven to play a role in cancer 

susceptibility and survival. Race pertains to a population 

with genotypic and phenotypic features that distinguish them 

from other populations; ethnicity refers to a population 

distinct from other populations through cultural, 

socioeconomic, diet, and similar features14. Multiple cohort 

studies have presented the association among race, ethnicity, 

and cancer1,2,15,23. Cancer risk predictors are socioeconomic 

status, basal metabolic index, dietary factors, smoking, and 

family history including lifestyle and genetic predisposition 

which are largely influenced by race and ethnicity2. Genetic 

disparities between races occur in the form of single 

nucleotide polymorphisms, copy number variations, and 

other mutations which may affect the activities of noncoding 

RNAs, epigenetic regulation, and post-translational 

modifications7,14.  

 

Additionally, racial disparities in the mutation and 

expression of oncogenes and tumor suppressor genes are 

found in the following metabolic enzymes and regulators as 

biomarkers of various cancers such as lung cancer: EGFR, 

KRAS, STK11, HER2, LKB1, MET and TP532,6,18. The 

diversity of these biomarkers across various racial and ethnic 

populations highlights the need to consider these factors in 

cancer treatment approaches. 

 

Uncontrolled cell proliferation and tissue invasion are the 

defining characteristics of cancer. These events occur 

because of the presence of mutations in a cancer cell 

genome, which in turn affects a cell’s gene expression and 

regulatory activities21. A key player in this process is 

microRNA (miRNA), a class of small noncoding RNA 

molecules possessing regulatory functions and discovered to 

be aberrantly expressed in cancer. A single miRNA can 

regulate hundreds of genes, and a single gene target 

possesses binding sites for multiple miRNAs; thus, this 

target can be regulated by multiple miRNAs.  

 

miRNAs post-transcriptionally control gene expression by 

inhibiting translation or destabilizing mRNAs. They are not 

restricted to a single role in all tissues; for example, the miR-

181 family has been identified as an oncogenic miRNA, but 

it also acts as a tumor suppressor in acute myeloid leukemia. 

Furthermore, miRNAs can simultaneously regulate 

oncogenes and tumor suppressor genes17. miRNAs are ideal 

candidates for cancer therapy because of their role in cancer. 

To date, several miRNAs including miR-21, miR-106a, 

miR-92a, miR-25, and miR-218 which display resistance or 

sensitivity to current NSCLC therapies, have been 

identified12. 

 

Current research on miRNA–gene interactions in lung 

cancer has focused on all races and ethnicities or on specific 

miRNAs and their interactions with genes9,10,13. Several 

studies have compared patients with NSCLC from different 

races with one another, but studies have yet to explore cancer 

on a specific race20,22. The present study examines 

Caucasians because it is the only race that has enough 

samples in our data source, namely, The Cancer Genome 
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Atlas (TCGA) repository, to detect a 10% mutational 

frequency19. Our study aims to rectify this gap in literature 

and identify the top miRNA–gene interactions in Caucasian 

patients by performing correlation analysis on datasets 

obtained from the TCGA repository. 

 

Material and Methods 
A. Data Pre-processing: On May 20, 2019, metadata were 

obtained from the TCGA repository with the following set 

filters: primary site, bronchus, and lung; program, TCGA; 

project, TCGA-LUAD; disease type, adenomas and 

adenocarcinomas and race, white. Raw read counts and 

normalized miRNA and gene expression data were retrieved 

using the R module TCGA-Assembler. 

 

B. Data Analysis: Differential expression analysis was 

conducted using the R module DESeq2 with the raw read 

counts of the cancer and normal groups as input. DESeq2 is 

used to estimate variance–mean dependence in count data 

and test differential expression based on negative binomial 

distribution11. A fold change (FC) cutoff of >1.5 and FC of 

<−1.5 were set for upregulated and downregulated 

expression levels respectively. Data with p < 0.05 were 

considered statistically significant. The FC and p-value 

cutoff were determined to be the most ideal factors that could 

be utilized for eliminating background noise without 

removing relevant data points4.  

 

The identified differentially expressed genes (DEGs) and 

differentially expressed miRNAs (DEMs) were subjected to 

Spearman’s rank correlation analysis in MATLAB. The 

expression of the upregulated miRNAs was paired with that 

of the downregulated genes while the downregulated 

miRNAs were paired with the upregulated genes. A negative 

correlation coefficient implied that the more upregulated the 

miRNA was, the more downregulated the corresponding 

gene in the miRNA–gene pair would be. Thus, only 

statistically significant (p < 0.05) miRNA–gene pairs with 

moderately to strongly negative correlation (rs < −0.5) were 

selected.  

 

C. Result Comparison: The resulting miRNA–gene pairs 

were compared with those in miRTarBase and miRDB for 

validation. miRTarBase is a database that contains 

experimentally validated miRNA–gene interactions3 and 

miRDB is a prediction tool and database for miRNA target 

prediction and functional annotations24. 

 

D. Visualization: A miRNA–gene interaction network was 

visualized using an edge-weighted spring-embedded layout 

in Cytoscape 3.7.2 with rs representing the edge weights. 

Volcano plots and PCA graphs were created in RStudio. 

 

Results and Discussion 
A total of 357 sample IDs were retrieved from TCGA: 28 

miRNA and 38 normal gene samples; 161 miRNA and 189 

cancer gene samples. After the miRNA and gene datasets 

were matched, only 160 cancer samples were retained. 

Differential expression analysis revealed 2,248 upregulated 

genes, 1,305 downregulated genes, 95 upregulated miRNAs, 

and 117 downregulated miRNAs. Spearman’s correlation 

analysis yielded a total of 256 miRNA–gene pairs with 179 

DEGs (141 upregulated and 68 downregulated genes) and 36 

DEMs (23 upregulated and 13 downregulated miRNAs). Of 

the 84 upregulated miRNA–downregulated gene pairs, 49 

and 54 pairs were identified in miRDB and miRTarBase 

respectively. Meanwhile, 64 and 61 downregulated 

miRNA–upregulated gene pairs were identified in miRDB 

and miRTarBase respectively. 

 

The 20 pairs with the lowest Spearman’s rank correlation 

coefficient (rs) for the upregulated miRNA–downregulated 

gene pairs and downregulated miRNA–upregulated gene 

pairs are shown in tables I and II respectively. rs < −0.5 

implies moderately to strongly negative correlation. Here, 

Spearman’s rank analysis was performed to obtain insights 

into the miRNA–gene interaction in LUAD. After DEMs 

and DEGs were identified using DESeq2, Spearman rank 

analysis was conducted to identify possible miRNA–gene 

interactions. The identified pairs were searched in miRDB 

and miRTarBase to find matches. The predicted pairs were 

found in the miRDB target prediction database while the 

validated pairs were experimentally validated with 

miRTarBase. 

 

The DEGs and DEMs from the top 20 miRNA–gene pairs 

along with their log FCs (LFCs), are displayed in tables III 

and IV respectively. LFC of ±1 indicated that the expression 

in the cancer samples was twice as much in the normal 

samples. The cutoff values for this pipeline were ±1.5 LFC 

and p < 0.05 which have been proven to be better at 

eliminating background noise4. In table IV, few individual 

miRNAs regulating multiple genes were found in the top 20 

miRNA–gene pair interactions. 

 

Fig. 2 shows the miRNA–gene interaction network between 

the top 20 miRNA–gene pairs. The edges were weighted 

with Spearman’s rank correlation coefficient. Shorter edges 

represented lower values and a stronger relationship between 

the respective miRNA and gene. The extent to which each 

gene was differentially expressed in LUAD tissues 

compared with that in normal samples was indicated by the 

intensity of color. 

 

PCA score plots and volcano plots were generated using the 

results of the differential expression analysis from DESeq2 

(Figs. 3–4). The PCA results of miRNA and gene expression 

data are displayed in fig. 3. Despite the low variance of both 

principal components, two distinct clusters were observed in 

each plot revealing a clear separation between the normal 

samples and the cancer samples except several outliers in 

both graphs.  

 

This result suggested that only a small percentage of the 

variability was explained possibly because the variability of 

cancer samples depended on many other factors.  
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Table 1 

Top 20 upregulated miRNA–downregulated gene pairs based on Spearman’s rank correlation coefficient. 
 

miRNA gene rs p-value miRDB miRTarBase 

mir-141 CYR61 −0.56968 <0.0001 N/A Validated 

mir-130b SDPR −0.54375 <0.0001 N/A N/A 

mir-141 FIBIN −0.53816 <0.0001 Validated Validated 

mir-128-1 SFTA1P −0.51671 <0.0001 N/A N/A 

mir-196b SFTA1P −0.5166 <0.0001 N/A N/A 

mir-130b INMT −0.51656 <0.0001 Validated Validated 

mir-130b ADH1B −0.51545 <0.0001 Validated Validated 

mir-128-2 SFTA1P −0.51481 <0.0001 N/A N/A 

mir-141 NEXN −0.51363 <0.0001 Validated N/A 

mir-31 GPR133 −0.51313 <0.0001 N/A N/A 

mir-141 TIMP3 −0.50857 <0.0001 Validated Validated 

mir-18a C1QTNF7 −0.50618 <0.0001 Validated N/A 

mir-4652 C1orf186 −0.50555 <0.0001 N/A N/A 

mir-141 MYL9 −0.50486 <0.0001 Validated Validated 

mir-130b PEBP4 −0.50389 <0.0001 Validated Validated 

mir-130b SEPP1 −0.50355 <0.0001 N/A N/A 

mir-130b C1QTNF7 −0.50352 <0.0001 Validated N/A 

mir-141 NTM −0.50243 <0.0001 Validated Validated 

mir-196b SUSD2 −0.50032 <0.0001 N/A Validated 

mir-135b CCDC88A −0.50001 <0.0001 Validated Validated 

 

Table 2 

Top 20 downregulated miRNA–upregulated gene pairs based on Spearman’s rank correlation coefficient. 
 

mirna gene rs p-value miRDB miRTar 

Base 

mir-101-2 ERCC6L −0.60725 <0.0001 N/A N/A 

mir-30d C1orf135 −0.57714 <0.0001 N/A N/A 

mir-30d SLC2A1 −0.57123 <0.0001 Validated Validated 

mir-30d GUCA1A −0.56757 <0.0001 Validated N/A 

mir-30d RRM2 −0.56629 <0.0001 Validated Validated 

mir-101-2 BUB1B −0.56252 <0.0001 N/A N/A 

mir-101-2 UHRF1 −0.56231 <0.0001 N/A N/A 

mir-101-2 KIF4A −0.56045 <0.0001 N/A N/A 

mir-30d ARNTL2 −0.5587 <0.0001 Validated Validated 

mir-143 NSUN5P2 −0.55384 <0.0001 N/A N/A 

mir-101-2 KIF18B −0.55092 <0.0001 N/A N/A 

mir-143 CYP2D7P1 −0.54922 <0.0001 N/A N/A 

mir-30d MAD2L1 −0.54892 <0.0001 Validated Validated 

mir-143 KIAA1875 −0.54836 <0.0001 N/A N/A 

mir-101-2 CCNB2 −0.54647 <0.0001 N/A N/A 

mir-101-2 PLK1 −0.54606 <0.0001 N/A N/A 

mir-101-2 CENPF −0.54603 <0.0001 N/A N/A 

mir-143 KAT2A −0.54368 <0.0001 Validated Validated 

mir-101-2 MKI67 −0.54361 <0.0001 N/A N/A 

mir-101-2 FOXM1 −0.54334 <0.0001 N/A N/A 
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Table 3 

Upregulated and downregulated genes from the top 20 miRNA–gene pairs and their respective log fold changes. 
 

Upregulated Downregulated 

Gene Log fold 

change 

Gene Log fold 

change 

ARNTL2 2.904931 ADH1B −3.48896 

BUB1B 3.799187 C1orf186 −1.70037 

C1orf135 2.55106 C1QTNF7 −2.62103 

CCNB2 3.205607 CCDC88A −1.54146 

CENPF 3.560425 CYR61 −1.53628 

CYP2D7P1 1.96707 FIBIN −2.23334 

ERCC6L 3.241212 GPR133 −1.54773 

FOXM1 3.450236 INMT −3.73346 

GUCA1A 4.071759 MYL9 −1.65122 

KAT2A 1.760588 NEXN −1.5546 

KIAA1875 2.168774 NTM −2.02238 

KIF18B 3.863912 PEBP4 −2.65329 

KIF4A 4.297333 SDPR −3.34755 

MAD2L1 2.647688 SEPP1 −1.78046 

MKI67 3.149358 SFTA1P −1.79308 

NSUN5P2 1.678464 SUSD2 −1.91968 

PLK1 3.42243 TIMP3 −1.82809 

RRM2 3.191271   

SLC2A1 3.556509   

UHRF1 3.549922   

 

 
Fig. 1:. Method pipeline 
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Fig. 2: miRNA–gene interaction network. The gray circles represent DEMs, and the blue circles correspond to DEGs. 

The intensity of the blue circles indicates the log fold change of the gene expression in cancer samples.  

A) Up regulated miRNA–downregulated gene pairs. B) Down regulated miRNA–upregulated gene pairs. 

 

 
Fig. 3: PCA graph. Red data points indicate the expression data from cancer samples, and blue points correspond to 

normal samples. A) miRNA data points. B) Gene data points. 

 

Table 4 

Upregulated and downregulated miRNAs from the top 20 miRNA–gene pairs and their respective log fold changes. 
 

Upregulated Downregulated 

miRNA Log fold 

change 

miRNA Log fold 

change 

hsa-mir-128-1 1.549945 hsa-mir-101-2 -1.93761 

hsa-mir-128-2 1.592446 hsa-mir-143 -2.57612 

hsa-mir-130b 1.690422 hsa-mir-30d -2.04672 

hsa-mir-141 1.741594   

hsa-mir-18a 1.643607   

hsa-mir-196b 3.345465   

hsa-mir-4652 4.933727   

hsa-mir-135b 3.05686   

hsa-mir-31 4.567679   



Research Journal of Biotechnology                                                                                                          Vol. 16 (3) March (2021)  
Res. J. Biotech 

24 

 
Fig. 4: Volcano plot of miRNA and gene log fold change against the p-value on a logarithmic scale.  

A) miRNA data points. B) Gene data points. Blue data points indicate p < 0.05 and red points correspond to LFC±1.5. 

 

This dependence could be seen in the graph via its spread out 

clusters as opposed to the more tightly clustered normal 

samples. Fig. 4 shows a volcano plot that displays all 

miRNAs and genes; those with p < 0.01 and LFC±2 were 

highlighted in blue and red respectively. Each data point 

represented a sample taken from a patient with cancer. 

 

As expected from previous studies, the number of miRNAs 

identified as differentially expressed is less than that of 

genes17. These miRNAs likely controlled the expression of 

multiple genes in LUAD. The number of upregulated genes 

was also more than that of downregulated genes. Of these 

genes, mir-4652, mir-31, mir-196b, mir-135b were possibly 

the most upregulated with an LFC of >3. The three 

significantly (LFC < 1.5) downregulated miRNAs were mir-

101-2, mir-30d, and mir-143.  

 

Conclusion 
This in silico study analyzed the relationship between 

miRNA and gene expression in Caucasian patients with 

LUAD by using TCGA data. Statistical analysis revealed a 

number of miRNA–gene interactions, but some of them 

remain unknown. Several downregulated miRNAs including 

mir-101-2, mir-30d, and mir-143 may act as tumor 

suppressors in LUAD.  

 

Upregulated miRNAs, such as mir-4652, mir-31, mir-196b, 

and mir-135b, may be considered therapeutic targets in future 

treatments. Further studies may aim to validate miRNA–gene 

interactions by applying methods such as molecular docking, 

molecular dynamics and transcriptomic analyses through 

RT-qPCR for gene and miRNA quantification with DEGs as 

protein targets and DEMs as ligands. 
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