
Abad Al-Ameer Aseel H.
Baghdad University, College of Science, Department of Chemistry, Baghdad, IRAQ
saraahmadmajeed@yahoo.com

Abstract
A series of metal ion complexes of some divalent transition metal ions having the general composition [ML₂Cl₂]nH₂O with 2-(benzo[d]thiazol-2-ylamino)-2-(5-chloro-2-hydroxy phenyl) acetonitrile ligand has been prepared from 5-chloro-2-hydroxy-benzaldehyde and benzo[d]thiazol-2-amine. Existence of cyanide as potassium cyanide in acidic medium was considered, characterized by elemental chemical analysis, conductance of molarity, magnetic susceptibility measurements, FTIR electronic spectral studies and mole ratio method. FTIR indicates the participation of amino and acetonitrile nitrogen which is coordinated with the central metal ion.

Keywords: 2-(benzo[d]thiazol-2-ylamino)-2-(5-chloro-2-hydroxy phenyl) acetonitrile, bidentate, divalent, transition metal ions.

Introduction
Legends and its transition metal vehicles have been of great interest to researchers since 1970s. At that time, it was found that pyridine complexes appear to be active against leukemia1. Strecker’s classic reaction is a good way to prepare cyanide, amino nitrile since 1850 when Adolf Strecker reacts with aldehyde, amine and hydrogen cyanide2. Adding cyanide to imines is the best way to synthesize amino nitriles.

Material and Methods
Materials: All reagents types, chemicals and solvents which were used for synthesis were commercially obtained from the House of British Drug (BDH). MnCl₂.4H₂O, CoCl₂.6H₂O, NiCl₂.6H₂O and CuCl₂.2H₂O, salts were obtained from Fluka Company. The prepared ligand 2-(benzo[d]thiazol-2-ylamino)-2-(5-chloro-2-hydroxyphenyl) acetonitrile has been synthesized and tagged compatible with the work being published. The spectral data of infrared of the complexes and ligands have been checked on a Shimadzu (8300) FTIR Spectrophotometer, as CsI disk. the absorption of Electronic Spectra has been noticed in the range 190–1100 nm on Shimadzu (160 A) Spectrometer which recently comes from (10⁻⁴M) in ethanol free at normal temperature by using cell made from quartz (1.00) cm. Atomic Absorption technique was employed to adjust the metal inside of the compounds by using Shimadzu (A.A 680G). The analysis of elemental carbon, hydrogen nitrogen and sulfur element was done in the presence of Euro vector-EA3000A C. H. N. S. Analyzer, Italy. Gallen Kamp uses a device to set ligand fusion points and stomach complexes and to find the proportion of chlorine present gravimetrically16.

Preparation method of the ligand: 5-chloro-2-hydroxy-benzaldehyde (1mmol) has been added to 20 ml glacial acetic acid, p-toluene sulphonic acid, catalyst has been added in a little amount, subsequently adding (1mmol) benzothiazol-2-ylamine. The pH must be used to about 4. The reaction of mix was transferred into ice and then it was made a little alkaline with NH₄OH solution. Precipitate was washed with water and is dried by air. A group of nitrite was reported in the preparation of amino nitrile by treating a small quantity of the sample with 10% NaOH solution and ammonia released after hydrolysis of the nitrite group. The most common method to determine the purity of the compound obtained by TLC, chloroform and ethyl acetate (1: 1) was used as indicator. The product has yellow orange color and the percentage of yield was 82.55% and the degree of melting was 113-114°C.

Preparation method of metal complexes: A following complex [ML₂Cl₂]nH₂O was prepared from 0.628 gm 2 mmol of (L) with 1mmol of the metal chloride 0.198 gm, 0.238 gm, 0.238 gm, 0.171 gm, 0.220 gm and 0.220 gm and 0.272 gm for MnCl₂.4H₂O, CoCl₂.6H₂O, NiCl₂.6H₂O and CuCl₂.2H₂O and solidified in (20 ml) CH₃CH₂OH and the mixture was refluxed with stirring under the influence of anhydrous conditions by using Na₂SO₄ (free from water) for 24 hours. The obtained complexes were placed after loss of alcohol and dried with diethyl ether (60-80 °C), then the products were filtered and then left in the desiccators to be dried under P₂O₅. The overall reaction was shown in equation (2).

Results and Discussion
All composites stated in this work have been mentioned in table 1. Elemental analysis of all vehicles in addition to metals is signified in table 1 as well. The ligand 2-(benzo[d]thiazol-2-ylamino)-2-(5-chloro-2-hydroxyphenyl) acetonitrile was prepared as described in the literature18. All complexes were prepared in absence of water to prevent any disintegration due to water of nitrile group to amide. Furthermore, if organic molecules are coordinated into metallic cations in coordinated organic mixtures, they will
be ready for nuclear attack such as water molecules responsible for nitrile degradation in the amide. These complexes have stability in the solid form and were described by the common ways FTIR, UV-visible spectroscopy, metal and elemental analysis, molar conductivity, mole ratio, chloride content and magnetic susceptibility. Because of this characterization it is possible that all assemblies have an octagonal structure with hexagonal format that contain two atoms of chlorides coordination.

The values of conductivity of the complexes (10^−3 M) were measured in the range 8-16 showing the nature of non-electrolytic of the complexes. The ratio of mol to the ratio of metallic ion to ligand was used at λ_max = 485 nm for [CoL₂Cl]₂H₂O and λ_max = 496 nm for [CuL₂Cl]₂H₂O in the presence of alcoholic solutions.

1H-NMR: The 1H-NMR spectra for the free ligand [L] in solution of the DMSO with description were placed in table 2. The OH phenolic proton takes a signal at 9.65 ppm and the signals are related to NH and CH 4.55 and 5.82 ppm respectively. The ¹³C-NMR spectrum displayed the results listed in table 3.

Infrared spectroscopy: The IR spectral data of [L] and their complexes are presented in table 3. It was found that some ranges characterize alpha-aminonitrite like 2193-2212 cm⁻¹. A shift of the range 25-55 cm⁻¹ was detected for C≡N. The red of the shift range at 15-40 cm⁻¹ was seen in N-H frequency bending of complexes significant to the bonded nitrogen to the metal ion. At the same time, a group of new bands appeared around 565-593 cm⁻¹ due to ν_M-O. The ν_M-O on the other hand could not be determined because of non-availability of far infrared data. The lattice water molecule existing in all complexes in the table 4 could be stayed by the wide band in 3430-3360 cm⁻¹ region of IR spectrum.

Magnetic studies: The complex of Cu^{2+} shows the normality of magnetic moment of 1.77 B.M. for the d⁹ system having an unpaired electron. The Ni^{2+} complexes with a magnetic moment of 3.11 B.M. detect the presence of octahedral form surfaces. The magnetic moment of 4.55 B.M. for the Co^{2+} complexes proposed a high spin octahedral configuration. Magnetic moment of Mn^{2+} complexes having 5.21 B.M value was expected to their great spin 6 coordination geometry.

Ultra violet – visible spectroscopy: The data of absorption spectra due to the ligand and their complexes were noted at normal temperature and solvent used was ethanol. The ligand presented two bands absorbed in the region 39528 cm⁻¹ and 34722 cm⁻¹ as a result of (π→π*) and (n→π*) moves separately. In other complexes, the bands were moved to higher wavelengths. The complex of Mn^{2+} does not display any d-d transitions but it showed charge transfer bands at 21277. The six coordinated electrons of Cu^{2+} complex spectrum display three bands at 14389, 22472 and 25974 cm⁻¹ meeting with the transitions as follow: ²B₁g → ²A₁g, (dₓ²−y²→dₓz, yz), (v₁), ²B₂g → ²B₂g, (dₓ²−y²→dₓz, yz), (v₁), ²B₁g → ²E₂g, (dₓ²−y²→dₓyz, v₁), according to that order. As a result, the Cu^{2+} complex may be counted to own a 4 coordinated geometry around the copper ion.

Though the three expected transitions are found in this case, they have similar levels of energy and usually appear in the formula of a single wide envelope. The spectrum also displays a band at 23923 cm⁻¹, that was given to a band of charge transfer. The two main bands were shown in electronic spectrum of Co^{2+} complex at 24934 cm⁻¹ and 15385 cm⁻¹. These two d-d bands were related to the ⁴T₁g(F) → ⁴T₁g(P) (v₁) and ⁴T₁g(F) → ⁴A₂g(F) (v₂) transitions, in that order, in an octahedral geometry around the Co^{2+} ion.

The charge transfer band of Co^{2+} complex shows 2096 cm⁻¹. Two bands in the electronic spectrum of Ni^{2+} complex display in the region 23810 and 14493 cm⁻¹ which are allocated to the ⁴A₂g(F) → ⁴T₁g(P) (v₁), ³A₂g(F) → ⁴T₁g(F) (v₂) transitions separately indicating an octahedral geometry around the Ni^{2+} ion. The complexes are also supported by the value of the v₂/v₁ ratio, which are 1.60 and 1.49, separately. Many field parameters are enlisted in table 5 such as the Racah inter-electronic repulsion parameter (B), splitting energy of ligand filed (10Dq), covalency factor (β) and stabilization energy of ligand field (LFSE) planned for Co^{2+} and Ni^{2+} complexes.

In the Co^{2+} complexes, the Racah inter-electronic repulsion parameter (B) was set from the following equation:

\[B' = 1/510 \{ (v_3 - 2v_2) + 3 [81v_3^2 - 16v_2(v_2 + v_3)]^{1/2} \} \]

when Ni^{2+} complex, (B') can always be obtained from the following equation:

\[B'' = v_2 + v_3 - 3v_2/v_1 \]

The ligand field splitting energy (10Dq) was set in the following manner for the Co^{2+} complex:

\[10Dq = 1/3(v_2 - v_3) + 15B' \]

For the Ni^{2+} complex, 10Dq = υ₁

The covalency factor (β) is calculated according to the following method:

\[\beta = B'/B \] (B is the free ion value)

The ligand field stabilization energy (LFSE) can be expressed as follows:

\[LFSE = 12Dq \]

Complexes have (B') values lesser than that of the freedom ion, it was considered a pointer of orbital overlap and
delocalization of the d-orbitals. Values of (β) were less than unity. The (β) value for the Ni$^{2+}$ complexes is a smaller amount than that for the Co$^{2+}$ complexes, due to the greater covalent nature of the former.

Table 1

| Physical features of [L] and its metal ion complexes with their conductivity values |
|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Formula M.wt. (gm/mole) | C% | H% | N% | S% | M% | Cl% | Color | M.P. (Dec.) | Yield % | Ω cm$^{-1}$ mol$^{-1}$ | Magnetic moment BM |
| L 315.5 | 57.05 (56.87) | 3.17 (3.05) | 13.31 (13.57) | 10.14 (10.07) | ----- | 11.25 (11.03) | Yellow orange solid | 113-114 | 82.55 | ----- | ----- |
| [MnL$_2$Cl$_2$.3H$_2$O] 810.94 | 44.39 (44.33) | 3.21 (3.18) | 10.36 (10.13) | 7.89 (7.49) | 6.77 (6.45) | 17.51 (17.38) | Dark orange solid | 212-215 | 72.32 | 13.77 | 5.21 |
| [CoL$_2$Cl$_2$.2H$_2$O] 796.93 | 45.17 (45.32) | 3.01 (2.93) | 10.54 (10.66) | 8.03 (7.88) | 7.39 (7.47) | 17.82 (17.95) | Light brown solid | 194-196 | 78.65 | 12.68 | 4.55 |
| [NiL$_2$Cl$_2$.3H$_2$O] 814.69 | 44.19 (45.01) | 3.19 (3.13) | 10.31 (10.50) | 7.86 (8.03) | 7.20 (7.35) | 17.43 (16.88) | Greenish yellow solid | 232-235 | 76.37 | 13.09 | 3.11 |
| [CuL$_2$Cl$_2$.2H$_2$O] 801.55 | 44.91 (44.75) | 2.99 (2.88) | 10.48 (10.66) | 7.98 (8.27) | 7.93 (8.02) | 17.72 (17.03) | Dark yellow solid | 207-210 | 71.45 | 11.89 | 1.77 |

Table 2

1H-NMR data for the 2-(benzo[d]thiazol-2-ylamino)-2-(5-chloro-2-hydroxy phenyl) acetonitrile in DMSO solution (ppm)$\delta - H$

<table>
<thead>
<tr>
<th>C${15}$H${10}$N$_3$SOCl</th>
<th>Aromatic protons</th>
<th>Phenolic OH proton</th>
<th>NH proton</th>
<th>CH proton</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.25 - 7.87</td>
<td>9.65</td>
<td>4.55</td>
<td>5.82</td>
<td></td>
</tr>
</tbody>
</table>

Table 3

13C- NMR data for 2-(benzo[d]thiazol-2-ylamino)-2-(5-chloro-2-hydroxy phenyl) acetonitrile

Table 4

The Special character bands for FTIR spectra of the ligand and its metal ion complexes in(cm$^{-1}$)

<table>
<thead>
<tr>
<th>Compound</th>
<th>νO-H cm$^{-1}$ Lattice water</th>
<th>νN-H cm$^{-1}$</th>
<th>νC≡N Nitrile</th>
<th>δN-H</th>
<th>δM-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>-----</td>
<td>3332</td>
<td>2237</td>
<td>1640</td>
<td>-----</td>
</tr>
<tr>
<td>[MnL$_2$Cl$_2$.3H$_2$O]</td>
<td>3396</td>
<td>3305</td>
<td>2193</td>
<td>1625</td>
<td>575</td>
</tr>
<tr>
<td>[CoL$_2$Cl$_2$.2H$_2$O]</td>
<td>3430</td>
<td>3310</td>
<td>2198</td>
<td>1612</td>
<td>578</td>
</tr>
<tr>
<td>[NiL$_2$Cl$_2$.3H$_2$O]</td>
<td>3402</td>
<td>3317</td>
<td>2182</td>
<td>1619</td>
<td>570</td>
</tr>
<tr>
<td>[CuL$_2$Cl$_2$.2H$_2$O]</td>
<td>3360</td>
<td>3318</td>
<td>2205</td>
<td>1613</td>
<td>593</td>
</tr>
</tbody>
</table>

172
Equation 1: Preparation of the ligand

Equation 2: Preparation method of metal complexes

Table 5

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ nm</th>
<th>ν cm$^{-1}$</th>
<th>Transition</th>
<th>B cm$^{-1}$</th>
<th>Dq/ B*</th>
<th>β</th>
<th>15B* cm$^{-1}$</th>
<th>Suggested structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>253, 288</td>
<td>39526, 34722</td>
<td>$\pi \rightarrow ^*\pi$</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>[MnL$_2$Cl$_2$].3H$_2$O</td>
<td>248, 272, 470</td>
<td>40323, 36765, 21277</td>
<td>Ligand Field, Ligand Field, C.T.</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>O.h</td>
</tr>
<tr>
<td>[CoL$_2$Cl$_2$].2H$_2$O</td>
<td>246, 295, 415</td>
<td>40650, 33898, 24096</td>
<td>Ligand Field, Ligand Field, C.T.</td>
<td>787</td>
<td>2.15</td>
<td>0.801</td>
<td>11660</td>
<td>O.h</td>
</tr>
<tr>
<td>[NiL$_2$Cl$_2$].3H$_2$O</td>
<td>260, 295, 405</td>
<td>38462, 33898, 24691</td>
<td>Ligand Field, Ligand Field, C.T.</td>
<td>631</td>
<td>1.582</td>
<td>0.603</td>
<td>9315</td>
<td>O.h</td>
</tr>
<tr>
<td>[CuL$_2$Cl$_2$].2H$_2$O</td>
<td>268, 293, 418</td>
<td>37313, 34130, 23923</td>
<td>Ligand Field, Ligand Field, C.T.</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>O.h</td>
<td>-----</td>
</tr>
</tbody>
</table>

*Calculated value
References

27. Kalagouda B.G., Siddappa A.P., Ramesh S.V., Rashmi V.S. and Manjula S.P., Synthesis and spectral studies of Cu(II), Ni(II), Co(II), Mns(II), Zns(II) and Cd(II) complexes of a new macroacyclic ligand P,

31. Dunn T.M., The visible and ultraviolet spectra of complex compounds in modern coordination chemistry, Inter Science, New York (1960)

32. Sunmez M. and Sekerci M., Synthesis and Characterization of Cu(II), Co(II), Ni(II) and Zn(II) Schiff Base Complexes from 1-
