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Abstract  
The notion of fractional Fourier transform (FrFT) has 

been used and investigated for many years by various 

research communities which find widespread 

applications in many diverse fields of research study. 

The potential applications include ranging from 

quantum physics, harmonic analysis, optical 

information processing, pattern recognition to varied 

allied areas of signal processing. Many significant 

theorems and properties of the FrFT have been 

investigated and applied to many signal processing 

applications, most important among these are 

convolution, product and correlation theorems. Still 

many magnificent research works related to the 

conventional FrFT lack the elegance and simplicity of 

the convolution, product and correlation theorems 

similar to the Euclidean Fourier transform (FT).  

 

Convolution theorem states that the FT of the 

convolution of two functions is the product of their 

respective FTs. The purpose of this study is to devise 

the equivalent elegancy of convolution, product and 

correlation theorems as in the case of Euclidean FT.  

 

Building on the seminal work of Pei et al7 and the 

potential of the simplified fractional Fourier transform 

(SmFrFT), a detailed mathematical investigation is 

established to present an elegant definition of 

convolution, product and correlation theorems in the 

SmFrFT domain, along with their associated important 

properties. It has been shown that the established 

theorems along with their associated properties very 

nicely generalize to the classical Euclidean FT. 
 

Keywords: Convolution theorem, Correlation theorem, 

Digital signal processing, Fractional Fourier transform, 

Fourier transform, Nonstationary signal processing, Product 

theorem. 

 

Introduction 
As it is well-known that the FT is one of the best and most 

valuable tools used in signal processing and analysis for 

centuries. It finds its diverse application areas in science and 

engineering.1,2 The fractional Fourier transform (FrFT) is a 

generalization of the Euclidean Fourier transform (FT) 

which has found to have several applications in the areas of 

optics and signal processing.3 It leads to the generalization 

of the notion of space (or time) and frequency domains 

which are central concepts of signal processing.4-12  

 

It is defined via an integral as: 

 

Ŧ𝜑[𝑥(𝑡)] = 𝑋𝜑(𝑢𝜑) = ∫ 𝑥(𝑡)К𝜑(𝑡, 𝑢𝜑)𝑑𝑡
∞

−∞
          (1) 

 

where the transformation kernel К𝜑(𝑡, 𝑢𝜑) of the FrFT is 

given by: 

 
 К𝜑(𝑡, 𝑢𝜑) =

{
 
 

 
 √

1−𝑗 𝑐𝑜𝑡𝜑

2𝜋
𝑒𝑥𝑝 [

𝑗

2
(𝑢𝜑

2 + 𝑡2) 𝑐𝑜𝑡 𝜑 − 𝑗𝑢𝜑𝑡 𝑐𝑠𝑐 𝜑]
𝑖𝑓𝜑 ≠ 𝑛𝜋, (𝑛 = 0,1,2,⋯ )

𝛿(𝑡 − 𝑢𝜑)𝑖𝑓𝜑 = 2𝑛𝜋,

𝛿(𝑡 + 𝑢𝜑)𝑖𝑓𝜑 = (2𝑛 + 1)𝜋

          (2) 

 

where 𝜑 indicates the rotation angle of the transformed 

signal in the FrFT domain. 

 

When 𝜑 = 𝜋 2⁄ , the FrFT reduces to the Euclidean FT and 

when 𝜑 = 0, it is the same as the identity operation. It also 

satisfies the additivity property Ŧ𝜑{Ŧ𝛾[𝑥(𝑡)]} =
Ŧ𝛾{Ŧ𝜑[𝑥(𝑡)]} = Ŧ𝜑+𝛾[𝑥(𝑡)]. The detailed properties were 

described by various authors.3,4,6 Thus, it is a generalization 

of the Euclidean FT and is regarded as a counter-clockwise 

rotation of the signal coordinates around the origin in the 

time-frequency (TF) plane with the rotation angle 𝜑.3,9,10,12 

 

As it is well-known that the FrFT is able to process non-

stationary or chirp signals better than the Euclidean FT, due 

to the reason that a chirp signal forms a line or an impulse in 

the TF plane and thus there exists a fractional transformation 

order in which such signals are compact.13 Chirp signals are 

not compact in the time or spatial domain.  

 

Thus, one can extract the signal easily in an appropriate 

(optimum) fractional Fourier domain, when it is not possible 

to separate the signal and noise in the spatial or Fourier 

frequency domain. It is this introduction of extra degree of 

freedom which gives the FrFT a potential improvement over 

the Euclidean FT.3 

 

Researchers14 have introduced various simplified forms of 

the FrFT known as the simplified fractional Fourier 
transform (SmFrFT). The reason for establishing the 

SmFrFT is that they are simplest for digital computation, 

optical implementation, graded-index (GRIN) medium 

implementation and radar system implementation with the 
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same capabilities as the conventional FrFT for designing 

fractional filters or for fractional correlation. The SmFrFT 

possesses a great potential for replacing the conventional 

FrFT in many applications.  

 

Pei et al14 established five types of SmFrFTs that have the 

same capabilities as the conventional FrFT for the fractional 

filter design or for fractional correlation and simultaneously 

are simplest for digital computation, optical implementation 

and radar system implementation. Thus, SmFrFTs have a 

great potential to substitute for the conventional FrFTs in 

many real-time applications.12,15-18 Another dominant 

advantage that SmFrFT possesses over the conventional 

FrFT is its less computational complexity as is evident.14 

 

In this study, the main focus is on Type 1 SmFrFT, because 

it is simpler for digital implementation.14 Many properties of 

the FrFT are currently well-known19-21 including its 

convolution, product and correlation theorems. However, 

the convolution, product and correlation theorems for the 

conventional FrFT19-21 do not generalize the classical result 

of the Euclidean FT.1,2 As it well-known that the convolution 

theorem of the Euclidean FT for the functions 𝑓(𝑡) and 𝑔(𝑡) 
with associated Euclidean FTs, 𝐹(𝜔) and 𝐺(𝜔), 
respectively is given.1,2 

 

𝑓(𝑡)⊛ 𝑔(𝑡) ↔
ℱ
𝐹(𝜔)𝐺(𝜔)                         (3) 

 

where ℱ and ⊛ denote the Euclidean FT operation and the 

convolution operation respectively. This convolution 

theorem can also be written as: 

 

∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞
↔
ℱ
𝐹(𝜔)𝐺(𝜔)                        (4) 

 

Thus, the convolution theorem states that the convolution of 

two time-domain functions results in simple multiplication 

of their Euclidean FTs in the Euclidean FT domain―a really 

powerful result. Similar is the case with correlation theorem 

in the Euclidean FT domain for two complex-valued 

functions:1,2  

 

𝑓
¯

(𝑡)⦾𝑔(𝑡) ↔
ℱ
𝐹
¯
(−𝜔)𝐺(𝜔)                                     (5) 

 

where ℱ, ⦾ and (∙)
¯

 denote the Euclidean FT operation, the 

correlation operation and the complex conjugate 

respectively. This correlation theorem can also be written 

as:1,2 

 

∫ 𝑓
¯

(𝜏)𝑔(𝜏 + 𝑡)𝑑𝜏
∞

−∞
↔
ℱ
𝐹
¯
(−𝜔)𝐺(𝜔)                        (6) 

 

Thus, the correlation theorem states that multiplying the 

Euclidean FT of one function with the complex conjugate of 

the other function gives the Euclidean FT of their 

correlation. 

 

However, the convolution and correlation theorem for the 

conventional FrFT lack this simplicity and elegancy in the 

analytical result.19-21 Various researchers22-27 in the 

fractional signal processing society have developed different 

modified versions of these theorems in the FrFT and linear 

canonical transform (LCT) domains by utilizing the 

conventional definition of their transforms. But, still there 

exists a room for its improvement to reflect upon the 

elegancy and the simplicity of the theorems.  

 

In this study, convolution, product and correlation theorems 

are proposed based on the simplified FrFT, which preserves 

the elegance and simplicity comparable to that of the 

Euclidean FT, which finds widespread applications in 

various allied research areas of signal processing.15-17 The 

conventional convolution, product and correlation theorems 

and its associated properties are shown to be special cases of 

the derived results. 

 

Preliminaries 
The Simplified Fractional Fourier Transform: Definition 

and Integral Representation: The simplified fractional 

Fourier transform (SmFrFT) of the signal 𝑥(𝑡) is represented 

as:14 

 

Ŧ𝑆
𝜑[𝑥(𝑡)] = 𝑋𝑆

𝜑
(𝑢𝜑) = ∫ 𝑥(𝑡)К𝜑

𝑆 (𝑡, 𝑢𝜑)𝑑𝑡
∞

−∞
                    (7) 

 

where 

 

 К𝜑
𝑆 (𝑡, 𝑢𝜑) =

1

√𝑗2𝜋
𝑒𝑥𝑝 [−𝑗𝑡𝑢𝜑 +

𝑗

2
𝑡2 𝑐𝑜𝑡 𝜑]           (8) 

 

Here, 𝑡 and 𝑢𝜑 can interchangeably represent time and 

fractional frequency domains. The transform output lies 

between time and frequency domains except for the special 

cases of 𝜑 = 0 and 𝜑 = 𝜋 2⁄  which belongs to FT domain. 

Based upon (7), the SmFrFT can be realized in a three-step 

process (fig. 1), as opposed to the conventional FrFT which 

is realized by a four-step process as follows: 

 

(i) pre-multiplication of the input signal by a linear chirp 

with the frequency modulation (FM) rate determined by the 

fractional rotation angle 𝜑 or the fractional transformation 

order 𝑎, related by 𝜑 = 𝑎𝜋 2⁄  with 𝑎 ∈ ℝ; 

 

(ii) computation of the Euclidean FT (ℱ); 

 

(iii) post-multiplication by a complex amplitude factor. 

 

The inverse SmFrFT is given as:14 

 

𝑥(𝑡) = √
𝑗

2𝜋
𝑒−

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑

∫ 𝑒𝑗𝑢𝜑𝑡
∞

−∞
𝑋𝑆
𝜑
(𝑢𝜑)𝑑𝑢𝜑               (9) 

 

where 𝑋𝑆
𝜑
(𝑢𝜑) represents the SmFrFT of the input signal 

𝑥(𝑡). 
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Fig. 1: Simplified fractional Fourier transform 

(SmFrFT) block diagram. 

 

Convolution Theorem associated with SmFrFT 

Theorem 3.1: For any two functions f, g ∈ L1(ℝ), let FS
φ
  

and GS
φ

 denote the SmFrFT of f and g respectively. The 

convolution operator of the SmFrFT is defined as: 

 

(𝑓 ⊛ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑊𝑐𝑣(𝜏, 𝑡)𝑑𝜏
∞

−∞
                    (10) 

 

where 𝑊𝑐𝑣(𝜏, 𝑡) = 𝑒
𝑗𝜏(𝜏−𝑡)𝑐𝑜𝑡𝜑. Then, the SmFrFT of the 

convolution of two complex functions is given by: 

 

Ŧ𝑆
𝜑{𝑓 ⊛ 𝑔}(𝑢𝜑) = √𝑗2𝜋𝐹𝑆

𝜑
(𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑)         (11) 

 

Proof: From the definition of SmFrFT (7) and the SmFrFT 

convolution (10), one obtains: 

 

 Ŧ𝑆
𝜑{𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ {𝑓(𝑡) ⊛ 𝑔(𝑡)}
∞

−∞
𝑒−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡 𝜑𝑑𝑡    (12) 

Ŧ𝑆
𝜑{𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ {∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑊𝑐𝑣(𝜏, 𝑡)𝑑𝜏

∞

−∞
}

∞

−∞
𝑒−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡 𝜑𝑑𝑡          

                                                                                         (13) 

For solving (13), letting (𝑡 − 𝜏) = 𝜁 

 

Ŧ𝑆
𝜑{𝑓 ⊛ 𝑔}(𝑢𝜑) =
1

√𝑗2𝜋
∫ ∫ 𝑓(𝜏)

∞

−∞

∞

−∞
𝑔(𝜁)𝑒−𝑗𝜏𝜁 𝑐𝑜𝑡𝜑𝑒−𝑗

(𝜁+𝜏)𝑢𝜑+
𝑗

2
(𝜁+𝜏)2 𝑐𝑜𝑡𝜑𝑑𝜏𝑑𝜁     

                                                                                         (14) 

 

Rearranging and multiplying numerator and denominator of 

(14) by 1 √2𝜋⁄ , one obtains: 

 

Ŧ𝑆
𝜑{𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑓(𝜏)
∞

−∞
𝑒−𝑗𝑢𝜑𝜏+

𝑗

2
𝜏2 𝑐𝑜𝑡𝜑𝑑𝜏 ×

1

√𝑗2𝜋
∫ 𝑔(𝜁)
∞

−∞
𝑒−𝑗𝑢𝜑𝜁+

𝑗

2
𝜁2 𝑐𝑜𝑡𝜑𝑑𝜁 × √𝑗2𝜋                         (15) 

 

By the definition of SmFrFT, the above expression (15) 

reduces to: 

 

Ŧ𝑆
𝜑{𝑓 ⊛ 𝑔}(𝑢𝜑) = √𝑗2𝜋𝐹𝑆

𝜑
(𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑),                      (16) 

 

which proves the theorem in SmFrFT domain.   

        

Special case: For the Euclidean FT, the rotation angle 𝜑 =
𝜋 2⁄ , then the expression (16) reduces to: 

 

Ŧ𝑆
𝜋 2⁄ {𝑓 ⊛ 𝑔}(𝑢𝜋 2⁄ ) = √𝑗2𝜋𝐹𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ )𝐺𝑆
𝜋 2⁄ (𝑢𝜋 2⁄ ) =

√𝑗2𝜋𝐹𝑆(𝜔)𝐺𝑆(𝜔)                       (17) 

This means that the proposed convolution theorem behaves 

similar to the Euclidean FT i.e. the convolution in the time-

domain is equivalent to the multiplication in the simplified 

fractional frequency domain except for the amplitude factor 

√𝑗2𝜋 and where 𝑢𝜋 2⁄ = 𝜔. 

 

Some properties associated with the convolution theorem in 

SmFrFT domain are illustrated below: 

 

Property 1 (Shift Convolution): Let 𝑓, 𝑔 ∈ 𝐿1(ℝ). The 

SmFrFT of 𝕊df ⊛ g and f ⊛ 𝕊dg is given by: 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) = √𝑗2𝜋𝑒

−𝑗𝑢𝜑𝑑+
𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹𝑆

𝜑
(𝑢𝜑 −

𝑑 𝑐𝑜𝑡 𝜑)𝐺𝑆
𝜑
(𝑢𝜑)                                     (18) 

 

Ŧ𝑆
𝜑{𝑓 ⊛ 𝕊𝑑𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
−𝑗𝑢𝜑𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹𝑆

𝜑
(𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑑 𝑐𝑜𝑡 𝜑)         (19) 

 

where the symbol 𝕊𝑑 represents the shift operator of a 

function by delay 𝑑 i.e. 𝕊𝑑𝑥(𝑡) = 𝑥(𝑡 − 𝑑), 𝑑 ∈ ℝ. 

 

Proof: The shift convolution operator 𝕊𝑑𝑓 ⊛ 𝑔 is given by: 

 

(𝕊𝑑𝑓 ⊛ 𝑔)(𝑡) = ∫ 𝑓(𝜏 − 𝑑)𝑔(𝑡 − 𝜏)𝑊𝑐𝑣(𝜏, 𝑡)𝑑𝜏
∞

−∞
       (20) 

 

where 𝑊𝑐𝑣(𝜏, 𝑡) = 𝑒
𝑗𝜏(𝜏−𝑡)𝑐𝑜𝑡𝜑. It implies: 

 

(𝕊𝑑𝑓 ⊛ 𝑔)(𝑡) = ∫ 𝑓(𝜏 − 𝑑)𝑔(𝑡 − 𝜏)𝑒𝑗𝜏(𝜏−𝑡) 𝑐𝑜𝑡𝜑𝑑𝜏
∞

−∞
 (21) 

 

Now, from the definition of SmFrFT (7), one obtains: 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ {𝕊𝑑𝑓(𝑡)⊛ 𝑔(𝑡)}
∞

−∞
𝑒−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡 𝜑𝑑𝑡          (22) 

 

Simplifying (22) further, one obtains: 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ {∫ 𝑓(𝜏 − 𝑑)𝑔(𝑡 −

∞

−∞

∞

−∞

𝜏)𝑒𝑗𝜏(𝜏−𝑡)𝑐𝑜𝑡𝜑𝑑𝜏} 𝑒−𝑗𝑡𝑢𝜑+
𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡                                (23) 

 

To solve (23), let us assume (𝑡 − 𝜏) = 𝑝 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑓(𝜏 −
∞

−∞

𝑑)𝑒−𝑗𝑢𝜑𝜏+
𝑗

2
𝜏2 𝑐𝑜𝑡𝜑 𝑑𝜏 × ∫ 𝑔(𝑝)𝑒−𝑗𝑢𝜑𝑝+

𝑗

2
𝑝2 𝑐𝑜𝑡𝜑∞

−∞
𝑑𝑝  

Ŧ𝑆
𝜑{𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) = ∫ 𝑓(𝜏 − 𝑑)𝑒−𝑗𝑢𝜑𝜏+

𝑗

2
𝜏2 𝑐𝑜𝑡𝜑∞

−∞
𝑑𝜏 ×

𝐺𝑆
𝜑
(𝑢𝜑)                         (24) 

 

Further, by letting (𝜏 − 𝑑) = 𝑧 and multiplying numerator 

and denominator of () by √𝑗2𝜋, one solves (24) as: 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) =
1

√𝑗2𝜋
𝑒−𝑗𝑢𝜑𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡𝜑

∫ 𝑓(𝑧)
∞

−∞
𝑒−𝑗(𝑢𝜑−𝑑𝑐𝑜𝑡𝜑)𝑧+

𝑗

2
𝑧2 𝑐𝑜𝑡𝜑𝑑𝑧 ×

𝐺𝑆
𝜑
(𝑢𝜑) × √𝑗2𝜋  
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Ŧ𝑆
𝜑{𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) = √𝑗2𝜋𝑒

−𝑗𝑢𝜑𝑑+
𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹𝑆

𝜑
(𝑢𝜑 −

𝑑 𝑐𝑜𝑡 𝜑)𝐺𝑆
𝜑
(𝑢𝜑), 

 

which proves the shift convolution property. 

 

Similarly, for solving Ŧ𝑆
𝜑{𝑓 ⊛ 𝕊𝑑𝑔}(𝑢𝜑) and utilizing the 

shift convolution operator of function 𝑓 ⊛ 𝕊𝑑𝑔 as 

∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏 − 𝑑)𝑊𝑐𝑣(𝜏, 𝑡)𝑑𝜏
∞

−∞
 where 𝑊𝑐𝑣(𝜏, 𝑡) =

𝑒𝑗𝜏(𝜏−𝑡) 𝑐𝑜𝑡𝜑and based on the previous steps, one obtains: 

 

Ŧ𝑆
𝜑{𝑓 ⊛ 𝕊𝑑𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
−𝑗𝑢𝜑𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹𝑆

𝜑
(𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑑 𝑐𝑜𝑡 𝜑),         (25) 

 

which proves the shift convolution property in SmFrFT 

domain.      

 

Thus, (24) and (25) indicate that if we apply a linear time 

delay to one signal in the time domain and convolve it with 

the another time domain signal, then the SmFrFT of the 

convolved signal is identical to the multiplications of the 

SmFrFTs of the respective signals, except that one of the 

signal has been shifted in the SmFrFT domain by an amount 

dependent on the change in time shift in the time domain and 

there is a multiplication with the complex harmonic 

dependent on the time shift. 

 

Special case: For the Euclidean FT, the rotation angle 𝜑 =
𝜋 2⁄ , then the expressions (24) and (25) reduce to: 

 

Ŧ𝑆
𝜋 2⁄ {𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜋 2⁄ ) =

√𝑗2𝜋𝑒−𝑗𝑢𝜋 2⁄ 𝑑𝐹𝑆
𝜋 2⁄ (𝑢𝜋 2⁄ )𝐺𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ )  

i.e, ℱ{𝕊𝑑𝑓 ⊛ 𝑔}(𝜔) = √𝑗2𝜋𝑒−𝑗𝜔𝑑𝐹𝑆(𝜔)𝐺𝑆(𝜔)         (26) 

 

Ŧ𝑆
𝜋 2⁄ {𝑓 ⊛ 𝕊𝑑𝑔}(𝑢𝜋 2⁄ ) =

√𝑗2𝜋𝑒−𝑗𝑢𝜋 2⁄ 𝑑𝐹𝑆
𝜋 2⁄ (𝑢𝜋 2⁄ )𝐺𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ )       

i.e, ℱ{𝑓 ⊛ 𝕊𝑑𝑔}(𝜔) = √𝑗2𝜋𝑒
−𝑗𝜔𝑑𝐹𝑆(𝜔)𝐺𝑆(𝜔)            (27) 

 

This means that the proposed shift convolution property 

behaves similar to the Euclidean FT as is evident from (26) 

and (27) respectively. 

 

Property 2 (Modulation Convolution): Let f, 𝑔 ∈ 𝐿1(ℝ). 
The SmFrFT of 𝕄𝑞𝑓 ⊛ 𝑔 and 𝑓 ⊛𝕄𝑞𝑔 is given by: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝑓 ⊛ 𝑔}(𝑢𝜑) = √𝑗2𝜋𝐹𝑆

𝜑
(𝑢𝜑 − 𝑞)𝐺𝑆

𝜑
(𝑢𝜑)         (28) 

 

 

Ŧ𝑆
𝜑
{𝑓 ⊛𝕄𝑞𝑔}(𝑢𝜑) = √𝑗2𝜋𝐹𝑆

𝜑
(𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑞)         (29) 

 

where the symbol 𝕄𝑞 represents the modulation operator i.e. 

the modulation by 𝑞 of a function 𝑥(𝑡), 𝕄𝑞𝑥(𝑡) = 𝑒
𝑗𝑞𝑡𝑥(𝑡), 

𝑞 ∈ ℝ. 

 

Proof: The modulation convolution operator 𝕄𝑞𝑓 ⊛ 𝑔 is 

given by: 

 

(𝕄𝑞𝑓 ⊛ 𝑔)(𝑡) = ∫ 𝑒𝑗𝑞𝜏𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑊𝑐𝑣(𝜏, 𝑡)𝑑𝜏
∞

−∞
      (30) 

 

where 𝑊𝑐𝑣(𝜏, 𝑡) = 𝑒
𝑗𝜏(𝜏−𝑡)𝑐𝑜𝑡𝜑. It implies: 

(𝕄𝑞𝑓 ⊛ 𝑔)(𝑡) = ∫ 𝑒𝑗𝑞𝜏𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑒𝑗𝜏(𝜏−𝑡) 𝑐𝑜𝑡𝜑𝑑𝜏
∞

−∞
  

       (31) 

 

Now, from the definition of SmFrFT (7), one obtains: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ {𝕄𝑞𝑓(𝑡)⊛
∞

−∞

𝑔(𝑡)} 𝑒−𝑗𝑡𝑢𝜑+
𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡             (32) 

 

Simplifying (32) further, one obtains: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ ∫ 𝑓(𝜏)

∞

−∞
𝑔(𝑡 −

∞

−∞

𝜏) 𝑒𝑗𝑞𝜏+𝑗𝜏
(𝜏−𝑡) 𝑐𝑜𝑡𝜑−𝑗𝑢𝜑𝑡+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝜏𝑑𝑡                     (33) 

 

By letting (𝑡 − 𝜏) = 𝑣, (33) reduces to 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑓(𝜏)
∞

−∞
𝑒−𝑗(𝑢𝜑−𝑞)𝜏+

𝑗

2
𝜏2 𝑐𝑜𝑡𝜑𝑑𝜏 ×

1

√𝑗2𝜋
∫ ℎ(𝑣)
∞

−∞
𝑒−𝑗𝑢𝜑𝑣+

𝑗

2
𝑣2 𝑐𝑜𝑡𝜑𝑑𝑣 × √𝑗2𝜋  

 

Simplifying further, one obtains: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝑓 ⊛ 𝑔}(𝑢𝜑) = √𝑗2𝜋𝐹𝑆

𝜑
(𝑢𝜑 − 𝑞)𝐺𝑆

𝜑
(𝑢𝜑),       (34) 

 

which proves the modulation convolution property in 

SmFrFT domain. 

 

Similarly, for solving Ŧ𝑆
𝜑
{𝑓 ⊛𝕄𝑞𝑔}(𝑢𝜑) and utilizing the 

modulation convolution operator of function 𝑓 ⊛𝕄𝑞𝑔 as 

∫ 𝑓(𝜏)𝑒𝑗𝑞(𝑡−𝜏)𝑔(𝑡 − 𝜏)𝑊𝑐𝑣(𝜏, 𝑡)𝑑𝜏
∞

−∞
 where 𝑊𝑐𝑣(𝜏, 𝑡) =

𝑒𝑗𝜏(𝜏−𝑡) 𝑐𝑜𝑡𝜑and based on the previous steps, one obtains: 

 

Ŧ𝑆
𝜑
{𝑓 ⊛𝕄𝑞𝑔}(𝑢𝜑) = √𝑗2𝜋𝐹𝑆

𝜑
(𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑞),         (35) 

 

which proves the modulation convolution property in 

SmFrFT domain. 

 

Thus, (34) and (35) indicate that if we apply a linear change 

in phase to one signal in the time domain and convolve it 

with the another time domain signal, then the SmFrFT of the 

convolved signal is identical to the multiplications of the 

SmFrFTs of the respective signals except that one of the 

signal has been shifted in the SmFrFT domain by an amount 

dependent on the change in phase in the time domain. 

 

Special case: In case of FT, (34) and (35) reduce to (for 𝜑 =
𝜋 2⁄ ): 
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Ŧ𝑆
𝜋 2⁄
{𝕄𝑞𝑓 ⊛ 𝑔}(𝑢𝜋 2⁄ ) = √𝑗2𝜋𝐹𝑆

𝜋 2⁄
(𝑢𝜋 2⁄ −

𝑞)𝐺𝑆
𝜋 2⁄ (𝑢𝜋 2⁄ ) = √𝑗2𝜋𝐹𝑆(𝜔 − 𝑞)𝐺𝑆(𝜔), 

i.e. ℱ{𝕄𝑞𝑓 ⊛ 𝑔}(𝜔) = √𝑗2𝜋𝐹𝑆(𝜔 − 𝑞)𝐺𝑆(𝜔)              (36) 

 

Ŧ𝑆
𝜋 2⁄ {𝑓 ⊛𝕄𝑞𝑔}(𝑢𝜋 2⁄ ) = √𝑗2𝜋𝐹𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ )𝐺𝑆
𝜋 2⁄ (𝑢𝜋 2⁄ −

𝑞)  

ℱ{𝑓 ⊛𝕄𝑞𝑔}(𝜔) = √𝑗2𝜋𝐹𝑆(𝜔)𝐺𝑆(𝜔 − 𝑞)                   (37) 

 

This means that the proposed modulation convolution 

property behaves similar to the Euclidean FT as is evident 

from (36) and (37) respectively. 

 

Property 3 (Time-Frequency shift Convolution): Let 𝑓, 

𝑔 ∈ 𝐿1(ℝ). The SmFrFT of 𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔 and 𝑓 ⊛𝕄𝑞𝕊𝑑𝑔 

is given by: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
−𝑗(𝑢𝜑−𝑞)𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹𝑆

𝜑
(𝑢𝜑 − 𝑞 − 𝑑 𝑐𝑜𝑡 𝜑)𝐺𝑆

𝜑
(𝑢𝜑)      

       (38) 

 

Ŧ𝑆
𝜑
{𝑓 ⊛𝕄𝑞𝕊𝑑𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
−𝑗(𝑢𝜑−𝑞)𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹𝑆

𝜑
(𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑞 − 𝑑 𝑐𝑜𝑡 𝜑)        

       (39) 

 

where the symbol 𝕊𝑑 and 𝕄𝑞 represent the shift operator of 

a function by delay 𝑑 and the modulation operator of a 

function by 𝑞 i.e. for the function 𝑥(𝑡), 𝕊𝑑𝑥(𝑡) = 𝑥(𝑡 − 𝑑), 
𝑑 ∈ ℝ and 𝕄𝑞𝑥(𝑡) = 𝑒

𝑗𝑞𝑡𝑥(𝑡), 𝑞 ∈ ℝ. 

 

Proof: The time-frequency shift convolution operator is 

given by: 

 

(𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔)(𝑡) = ∫ 𝑒𝑗𝑞𝜏
∞

−∞
𝑓(𝜏 − 𝑑)𝑔(𝑡 − 𝜏)𝑊𝑐𝑣(𝜏, 𝑡)𝑑𝜏         (40) 

 

where 𝑊𝑐𝑣(𝜏, 𝑡) = 𝑒
𝑗𝜏(𝜏−𝑡)𝑐𝑜𝑡𝜑. It implies: 

 

(𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔)(𝑡) = ∫ 𝑒𝑗𝑞𝜏
∞

−∞
𝑓(𝜏 − 𝑑)𝑔(𝑡 − 𝜏)𝑒𝑗𝜏(𝜏−𝑡) 𝑐𝑜𝑡 𝜑𝑑𝜏  (41) 

 

The SmFrFT of (41) is obtained as: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ {𝕄𝑞𝕊𝑑𝑓(𝑡)⊛
∞

−∞

𝑔(𝑡)} 𝑒−𝑗𝑡𝑢𝜑+
𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡                      (42) 

 

Simplifying (42) further, one obtains: 

 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ ∫ 𝑓(𝜏 − 𝑑)

∞

−∞

∞

−∞
𝑔(𝑡 −

𝜏)𝑒𝑗𝑞𝜏+𝑗𝜏
(𝜏−𝑡)𝑐𝑜𝑡𝜑−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝜏𝑑𝑡                    (43) 

 

 

By letting (𝑡 − 𝜏) = ϛ, (43) is simplified as: 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑓(𝜏 −
∞

−∞

𝑑) 𝑒𝑗𝑞𝜏−𝑗𝑢𝜑𝜏+
𝑗

2
𝜏2 𝑐𝑜𝑡𝜑𝑑𝜏 ×

1

√𝑗2𝜋
∫ 𝑔(ϛ)
∞

−∞
𝑒−𝑗𝑢𝜑ϛ+

𝑗

2
ϛ2 𝑐𝑜𝑡𝜑𝑑ϛ × √𝑗2𝜋                      (44) 

 

Let (𝜏 − 𝑑) = 𝜉, (44) reduces to 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑓(𝜉)
∞

−∞
𝑒−𝑗(𝑢𝜑−𝑞−𝑑𝑐𝑜𝑡𝜑)𝜉+

𝑗

2
𝜉2 𝑐𝑜𝑡𝜑𝑑𝜉 × √𝑗2𝜋 ×

𝑒−𝑗𝑢𝜑𝑑+𝑗𝑞𝑑+
𝑗

2
𝑑2 𝑐𝑜𝑡𝜑 × 𝐺𝑆

𝜑
(𝑢𝜑)                       (45) 

 

Thus,  

 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
−𝑗(𝑢𝜑−𝑞)𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹𝑆

𝜑
(𝑢𝜑 − 𝑞 − 𝑑 𝑐𝑜𝑡 𝜑)𝐺𝑆

𝜑
(𝑢𝜑),                      

       (46) 

 

which proves the time-frequency shift convolution property 

in SmFrFT domain. 

 

Similarly, for solving Ŧ𝑆
𝜑
{𝑓 ⊛𝕄𝑞𝕊𝑑𝑔}(𝑢𝜑) and utilizing 

the shift and modulation convolution operator of function 

𝑓 ⊛𝕄𝑞𝕊𝑑𝑔 as ∫ 𝑓(𝜏)𝑒𝑗𝑞(𝑡−𝜏)𝑔(𝑡 − 𝜏 − 𝑑)𝑊𝑐𝑣(𝜏, 𝑡)𝑑𝜏
∞

−∞
, 

where 𝑊𝑐𝑣(𝜏, 𝑡) = 𝑒
𝑗𝜏(𝜏−𝑡)𝑐𝑜𝑡𝜑and based on the previous 

steps, one obtains: 

  

Ŧ𝑆
𝜑
{𝑓 ⊛𝕄𝑞𝕊𝑑𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
−𝑗(𝑢𝜑−𝑞)𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹𝑆

𝜑
(𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑞 − 𝑑 𝑐𝑜𝑡 𝜑),  

                       (47) 

 

which proves the time-frequency shift convolution property 

in SmFrFT domain. 

 

Special case: In case of FT, (46) and (47) reduce to (for 𝜑 =
𝜋 2⁄ ) 

 

Ŧ𝑆
𝜋 2⁄
{𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔}(𝑢𝜋 2⁄ ) =

√𝑗2𝜋𝑒−𝑗(𝑢𝜋 2⁄ −𝑞)𝑑𝐹𝑆
𝜋 2⁄ (𝑢𝜋 2⁄ − 𝑞)𝐺𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ ), 

 

i.e. ℱ{𝕄𝑞𝕊𝑑𝑓 ⊛ 𝑔}(𝜔) = √𝑗2𝜋𝑒−𝑗(𝜔−𝑞)𝑑𝐹𝑆(𝜔 −

𝑞)𝐺𝑆(𝜔)                 (48) 

 

Ŧ𝑆
𝜋 2⁄ {𝑓 ⊛𝕄𝑞𝕊𝑑𝑔}(𝑢𝜋 2⁄ ) =

√𝑗2𝜋𝑒−𝑗(𝑢𝜋 2⁄ −𝑞)𝑑𝐹𝑆
𝜋 2⁄ (𝑢𝜋 2⁄ )𝐺𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ − 𝑞)  

i.e ℱ{𝑓 ⊛𝕄𝑞𝕊𝑑𝑔}(𝜔) = √𝑗2𝜋𝑒
−𝑗(𝜔−𝑞)𝑑𝐹𝑆(𝜔)𝐺𝑆(𝜔 − 𝑞) 

                         (49) 

 

This means that the proposed time-frequency shift 

convolution property behaves similar to the Euclidean FT as 

is evident from (48) and (49) respectively. 
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Product Theorem associated with SmFrFT 

Theorem 4.1: For any two functions f, g ∈ L1(ℝ), let FS
φ

, 

GS
φ

 denote the SmFrFT of f and g respectively. We define the 

product operation associated with SmFrFT as: 

 

𝑧(𝑡) = 𝑓(𝑡)𝑔(𝑡)𝑊𝑝(𝑡) = 𝑓(𝑡)𝑔(𝑡)𝑒
𝑗

2
𝑡2 𝑐𝑜𝑡𝜑

        (50) 

where 𝑊𝑝(𝑡) = 𝑒
𝑗

2
𝑡2 𝑐𝑜𝑡𝜑

. Then, the SmFrFT of the product 

of two functions is given by: 

 

Ŧ𝑆
𝜑{𝑧(𝑡)} = Ŧ𝑆

𝜑
{𝑓(𝑡)𝑔(𝑡)𝑊𝑝(𝑡)} = √

𝑗

2𝜋
𝐹𝑆
𝜑
(𝑢𝜑) ∗ 𝐺𝑆

𝜑
(𝑢𝜑) (51) 

 

Proof: The function 𝑧 is in 𝐿1(ℝ) and thus its SmFrFT is 

given by (7). To compute Ŧ𝑆
𝜑{𝑧(𝑡)}, express the function 

𝑧(𝑡) in terms of its SmFrFT, as follows: 

 

Ŧ𝑆
𝜑{𝑧(𝑡)} = 𝑍𝑆

𝜑
(𝑢𝜑) =

1

√𝑗2𝜋
∫ {𝑓(𝑡)𝑔(𝑡)𝑊𝑝(𝑡)}
∞

−∞
𝑒−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡 =

1

√𝑗2𝜋
∫ {𝑓(𝑡)}
∞

−∞
𝑔(𝑡)𝑊𝑝(𝑡)𝑒

−𝑗𝑡𝑢𝜑+
𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡                    (52) 

 
Ŧ𝑆
𝜑{𝑧(𝑡)} = 𝑍𝑆

𝜑
(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑒−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡 𝜑∞

−∞
{√

𝑗

2𝜋
𝑒−

𝑗

2
𝑡2 𝑐𝑜𝑡 𝜑

∫ 𝑒𝑗𝜈𝜑𝑡𝐹𝑆
𝜑
(𝜈𝜑)

∞

−∞
𝑑𝜈𝜑}𝑔(𝑡)𝑊𝑝(𝑡)𝑑𝑡  

 

Simplifying further and using 𝑊𝑝(𝑡) = 𝑒
𝑗

2
𝑡2 𝑐𝑜𝑡𝜑

, one 

obtains: 

 

Ŧ𝑆
𝜑{𝑧(𝑡)} = 𝑍𝑆

𝜑
(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑒−𝑗(𝑢𝜑−𝜈𝜑)𝑡+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑∞

−∞
𝑔(𝑡)𝑑𝑡 ×

√
𝑗

2𝜋
∫ 𝐹𝑆

𝜑
(𝜈𝜑)

∞

−∞
𝑑𝜈𝜑                                        (53) 

 

Solving (53), one gets the following analytical expression: 

 

Ŧ𝑆
𝜑{𝑧(𝑡)} = 𝑍𝑆

𝜑
(𝑢𝜑) = √

𝑗

2𝜋
∫ 𝐹𝑆

𝜑
(𝜈𝜑)

∞

−∞
𝐺𝑆
𝜑
(𝑢𝜑 −

𝜈𝜑)𝑑𝜈𝜑 = √
𝑗

2𝜋
𝐹𝑆
𝜑
(𝑢𝜑) ∗ 𝐺𝑆

𝜑
(𝑢𝜑),                                  (54) 

 

which proves the product theorem in SmFrFT domain.  

        

Thus, the product theorem in SmFrFT domain states that the 

SmFrFT of the product of two functions is obtained by 

conventional convolution between the SmFrFTs of the two 

functions. 

 

Correlation Theorem associated with SmFrFT 
Theorem 5.1: For any two complex-valued functions 𝑓, 𝑔 ∈
𝐿1(ℝ), let 𝐹𝑆

𝜑
, 𝐺𝑆

𝜑
 denote the SmFrFT of f, g, respectively. 

We define the correlation operator of the SmFrFT as: 

 

(𝑓⦾𝑔)(𝑡) = ∫ 𝑓
¯

(𝜏)𝑔(𝑡 + 𝜏)𝑊𝑐𝑟(𝜏, 𝑡)𝑑𝜏
∞

−∞
                    (55) 

where 𝑊𝑐𝑟(𝜏, 𝑡) = 𝑒
𝑗𝜏(𝜏+𝑡) 𝑐𝑜𝑡𝜑. Then, the SmFrFT of the 

correlation of the two complex-valued functions is given by: 

  

Ŧ𝑆
𝜑{𝑓⦾𝑔} = √𝑗2𝜋𝐹𝑆

𝜑
¯

(−𝑢𝜑)𝐺𝑆
𝜑
(𝑢𝜑)                                   (56) 

 

Proof: From the definition of SmFrFT (7), one obtains: 

 

Ŧ𝑆
𝜑{𝑓⦾𝑔} =

1

√𝑗2𝜋
∫ {𝑓(𝑡)⦾𝑔(𝑡)}
∞

−∞
𝑒−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡  

Ŧ𝑆
𝜑{𝑓⦾𝑔} =

1

√𝑗2𝜋
∫ {∫ 𝑓

¯

(𝜏)𝑔(𝑡 +
∞

−∞

∞

−∞

𝜏)𝑊𝑐𝑟(𝜏, 𝑡)𝑑𝜏} 𝑒
−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡                       (57) 

 

For solving (57), letting 𝑡 + 𝜏 = 𝜆 

 
Ŧ𝑆
𝜑{𝑓⦾𝑔} =

1

√𝑗2𝜋
∫ ∫ 𝑓

¯
(𝜏)

∞

−∞

∞

−∞
𝑔(𝜆)𝑒𝑗𝜏𝜆 𝑐𝑜𝑡 𝜑𝑒−𝑗

(𝜆−𝜏)𝑢𝜑+
𝑗

2
(𝜆−𝜏)2 𝑐𝑜𝑡 𝜑𝑑𝜏𝑑𝜁     (58) 

 

Rearranging and noting that the complex-valued function 

𝑓(𝑡) = 𝑓1(𝑡) + 𝑗𝑓2(𝑡), one obtains: 

 

Ŧ𝑆
𝜑{𝑓⦾𝑔} =

1

√𝑗2𝜋
∫ 𝑓

¯

(𝜏)
∞

−∞
𝑒𝑗𝑢𝜑𝜏+

𝑗

2
𝜏2 𝑐𝑜𝑡𝜑𝑑𝜏 ×

√𝑗2𝜋𝐺𝑆
𝜑
(𝑢𝜑)                       (59) 

where, 𝐺𝑆
𝜑
(𝑢𝜑) = ∫ 𝑔(𝜆)

∞

−∞
𝑒−𝑗𝑢𝜑𝜆+

𝑗

2
𝜆2 𝑐𝑜𝑡𝜑

         (60) 

 

Solving (60) further, one obtains: 

 

Ŧ𝑆
𝜑{𝑓⦾𝑔} =

1

√𝑗2𝜋
∫ [𝑓1(𝜏) − 𝑗𝑓2(𝜏)]
∞

−∞
𝑒𝑗𝑢𝜑𝜏+

𝑗

2
𝜏2 𝑐𝑜𝑡𝜑𝑑𝜏 ×

√𝑗2𝜋𝐺𝑆
𝜑
(𝑢𝜑)  

Ŧ𝑆
𝜑{𝑓⦾𝑔} =

1

√𝑗2𝜋
∫ 𝑓1(𝜏)
∞

−∞
𝑒−𝑗(−𝑢𝜑)𝜏+

𝑗

2
𝜏2 𝑐𝑜𝑡𝜑𝑑𝜏 ×

√𝑗2𝜋𝐺𝑆
𝜑
(𝑢𝜑) − 𝑗

1

√𝑗2𝜋
∫ 𝑓2(𝜏)
∞

−∞
𝑒−𝑗(−𝑢𝜑)𝜏+

𝑗

2
𝜏2 𝑐𝑜𝑡𝜑𝑑𝜏 ×

√𝑗2𝜋𝐺𝑆
𝜑
(𝑢𝜑)                          (61) 

 

Solving (61), one gets: 

 

Ŧ𝑆
𝜑{𝑓⦾𝑔} = √𝑗2𝜋𝐹1𝑆

𝜑(−𝑢𝜑)𝐺𝑆
𝜑
(𝑢𝜑) − 𝑗√𝑗2𝜋𝐹2𝑆

𝜑(−𝑢𝜑)𝐺𝑆
𝜑
(𝑢𝜑)  

or, Ŧ𝑆
𝜑{𝑓⦾𝑔} = √𝑗2𝜋[𝐹1𝑆

𝜑(−𝑢𝜑) − 𝑗𝐹2𝑆
𝜑(−𝑢𝜑)]𝐺𝑆

𝜑
(𝑢𝜑) =

√𝑗2𝜋𝐹𝑆
𝜑
¯

(−𝑢𝜑)𝐺𝑆
𝜑
(𝑢𝜑)                    (62) 

 

which proves the theorem.     

    

Special case: For the Euclidean  FT, the rotation angle 𝜑 =
𝜋 2⁄ , then the expression (62) reduces to: 

Ŧ𝑆
𝜋 2⁄ {𝑓⦾𝑔} = √𝑗2𝜋𝐹𝑆

𝜋 2⁄
¯

(−𝑢𝜋 2⁄ )𝐺𝑆
𝜋 2⁄ (𝑢𝜋 2⁄ )  

ℱ{𝑓⦾𝑔} = √𝑗2𝜋𝐹𝑆
¯
(−𝜔)𝐺𝑆(𝜔)                      (63) 

 

This means that the proposed correlation theorem behaves 

similar to the Euclidean FT, except for the amplitude factor. 
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Some properties associated with the correlation theorem in 

SmFrFT domain are illustrated below: 

 

Property 1 (Shift Convolution): Let 𝑓, 𝑔 ∈ 𝐿1(ℝ). The 

SmFrFT of 𝕊𝑑𝑓⦾𝑔 and 𝑓⦾𝕊𝑑𝑔 is given by: 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) = √𝑗2𝜋𝑒

𝑗𝑢𝜑𝑑+
𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹

¯

𝑆
𝜑
(−𝑢𝜑 −

𝑑 𝑐𝑜𝑡 𝜑)𝐺𝑆
𝜑
(𝑢𝜑)                    (64) 

 

Ŧ𝑆
𝜑{𝑓⦾𝕊𝑑𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
−𝑗𝑢𝜑𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹

¯

𝑆
𝜑
(−𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑑 𝑐𝑜𝑡 𝜑)       (65) 

 

where the symbol 𝕊𝑑 represents the shift operator of a 

function by delay 𝑑 i.e., 𝕊𝑑𝑥(𝑡) = 𝑥(𝑡 − 𝑑), 𝑑 ∈ ℝ. 

 

Proof: The shift correlation operator 𝕊𝑑𝑓⦾𝑔 is given by: 

 

(𝕊𝑑𝑓⦾𝑔)(𝑡) = ∫ 𝑓
¯

(𝜏 − 𝑑)𝑔(𝑡 + 𝜏)𝑊𝑐𝑟(𝜏, 𝑡)𝑑𝜏
∞

−∞
         (66) 

 

where 𝑊𝑐𝑟(𝜏, 𝑡) = 𝑒
𝑗𝜏(𝜏+𝑡) 𝑐𝑜𝑡𝜑. It implies: 

 

(𝕊𝑑𝑓⦾𝑔)(𝑡) = ∫ 𝑓
¯

(𝜏 − 𝑑)𝑔(𝑡 + 𝜏)𝑒𝑗𝜏(𝜏+𝑡)𝑐𝑜𝑡𝜑𝑑𝜏
∞

−∞
   (67) 

 

Now, from the definition of SmFrFT (7), one obtains: 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) =
1

√𝑗2𝜋
∫ {𝕊𝑑𝑓(𝑡)⦾𝑔(𝑡)}
∞

−∞
𝑒−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡         (68) 

 

Simplifying (68) further, one obtains: 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ {∫ 𝑓

¯

(𝜏 − 𝑑)𝑔(𝑡 +
∞

−∞

∞

−∞

𝜏)𝑒𝑗𝜏(𝜏+𝑡)𝑐𝑜𝑡𝜑𝑑𝜏} 𝑒−𝑗𝑡𝑢𝜑+
𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡                    (69) 

 

To solve (69), let us assume (𝑡 + 𝜏) = 𝑝 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑓

¯

(𝜏 − 𝑑)𝑒𝑗𝑢𝜑𝜏+
𝑗

2
𝜏2 𝑐𝑜𝑡𝜑∞

−∞
𝑑𝜏 ×

∫ 𝑔(𝑝)𝑒−𝑗𝑢𝜑𝑝+
𝑗

2
𝑝2 𝑐𝑜𝑡𝜑∞

−∞
𝑑𝑝                               (70) 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) = ∫ 𝑓

¯

(𝜏 − 𝑑)𝑒𝑗𝑢𝜑𝜏+
𝑗

2
𝜏2 𝑐𝑜𝑡𝜑∞

−∞
𝑑𝜏 ×

𝐺𝑆
𝜑
(𝑢𝜑)                       (71) 

 

Further, by letting (𝜏 − 𝑑) = 𝑧 and multiplying numerator 

and denominator of (71) by √𝑗2𝜋, one solves (71) as: 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
𝑒𝑗𝑢𝜑𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡𝜑

∫ 𝑓
¯

(𝑧)
∞

−∞
𝑒𝑗(𝑢𝜑+𝑑𝑐𝑜𝑡𝜑)𝑧+

𝑗

2
𝑧2 𝑐𝑜𝑡𝜑𝑑𝑧 ×

𝐺𝑆
𝜑
(𝑢𝜑) × √𝑗2𝜋                     (72) 

Now, by letting the complex-valued function to be 𝑓(𝑧) =

𝑓1(𝑧) + 𝑗𝑓2(𝑧), it implies 𝑓
¯

(𝑧) = 𝑓1(𝑧) − 𝑗𝑓2(𝑧) and 

thereby further reducing (72), one obtains: 

 
Ŧ𝑆
𝜑{𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
𝑗𝑢𝜑𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡 𝜑𝐺𝑆

𝜑
(𝑢𝜑) [

1

√𝑗2𝜋
∫ 𝑓1(𝑧)
∞

−∞
𝑒𝑗(𝑢𝜑+𝑑 𝑐𝑜𝑡 𝜑)𝑧+

𝑗

2
𝑧2 𝑐𝑜𝑡 𝜑𝑑𝑧 −

𝑗
1

√𝑗2𝜋
∫ 𝑓1(𝑧)
∞

−∞
𝑒𝑗(𝑢𝜑+𝑑 𝑐𝑜𝑡 𝜑)𝑧+

𝑗

2
𝑧2 𝑐𝑜𝑡 𝜑𝑑𝑧]          (73) 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓⦾𝑔}(𝑢𝜑)

= √𝑗2𝜋𝑒
𝑗𝑢𝜑𝑑+

𝑗
2
𝑑2 𝑐𝑜𝑡 𝜑𝐺𝑆

𝜑
(𝑢𝜑)[𝐹1𝑆

𝜑
(−𝑢𝜑    − 𝑑 𝑐𝑜𝑡 𝜑)

− 𝑗𝐹2𝑆
𝜑
(−𝑢𝜑 − 𝑑 𝑐𝑜𝑡 𝜑)]               

Ŧ𝑆
𝜑{𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) = √𝑗2𝜋𝑒

𝑗𝑢𝜑𝑑+
𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐺𝑆

𝜑
(𝑢𝜑) ×

𝐹
¯

𝑆
𝜑
(−𝑢𝜑 − 𝑑 𝑐𝑜𝑡 𝜑)                                 (74) 

 

Thus, 

 

Ŧ𝑆
𝜑{𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) = √𝑗2𝜋𝑒

𝑗𝑢𝜑𝑑+
𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹

¯

𝑆
𝜑
(−𝑢𝜑 −

𝑑 𝑐𝑜𝑡 𝜑)𝐺𝑆
𝜑
(𝑢𝜑),            (75) 

 

which proves the shift correlation property of the correlation 

theorem in SmFrFT domain. 

 

Similarly, for solving Ŧ𝑆
𝜑{𝑓⦾𝕊𝑑𝑔}(𝑢𝜑) and utilizing the 

shift correlation operator of function 𝑓⦾𝕊𝑑𝑔 as 

∫ 𝑓
¯

(𝜏)𝑔(𝑡 + 𝜏 − 𝑑)𝑊𝑐𝑟(𝜏, 𝑡)𝑑𝜏
∞

−∞
, where, 𝑊𝑐𝑟(𝜏, 𝑡) =

𝑒𝑗𝜏(𝜏+𝑡) 𝑐𝑜𝑡𝜑and based on the previous steps, one obtains: 

  

Ŧ𝑆
𝜑{𝑓⦾𝕊𝑑𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
−𝑗𝑢𝜑𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡𝜑𝐹

¯

𝑆
𝜑
(−𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑑 𝑐𝑜𝑡 𝜑),        (76) 

 

which proves the shift correlation property of the correlation 

theorem in SmFrFT domain.   

  

Special case: For the FT, the rotation angle 𝜑 = 𝜋 2⁄ , then 

the expressions (75) and (76) reduce to: 

 

Ŧ𝑆
𝜋 2⁄ {𝕊𝑑𝑓⦾𝑔}(𝑢𝜋 2⁄ ) =

√𝑗2𝜋𝑒−𝑗𝑢𝜋 2⁄ 𝑑𝐹
¯

𝑆
𝜋 2⁄ (−𝑢𝜋 2⁄ )𝐺𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ )  

i.e ℱ{𝕊𝑑𝑓⦾𝑔}(𝜔) = √𝑗2𝜋𝑒
−𝑗𝜔𝑑𝐹

¯

𝑆(−𝜔)𝐺𝑆(𝜔)          (77) 

 

Ŧ𝑆
𝜋 2⁄ {𝑓⦾𝕊𝑑𝑔}(𝑢𝜋 2⁄ ) =

√𝑗2𝜋𝑒−𝑗𝑢𝜋 2⁄ 𝑑𝐹
¯

𝑆
𝜋 2⁄ (−𝑢𝜋 2⁄ )𝐺𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ )       

i.e ℱ{𝑓⦾𝕊𝑑𝑔}(𝜔) = √𝑗2𝜋𝑒
−𝑗𝜔𝑑𝐹

¯

𝑆(−𝜔)𝐺𝑆(𝜔)           (78) 

 

This means that the proposed shift correlation property 

behaves similar to the Euclidean FT, as is evident from (77) 

and (78) except for the amplitude factor. 
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Property 2 (Modulation Convolution): Let 𝑓, 𝑔 ∈ 𝐿1(ℝ). 
The SmFrFT of 𝕄𝑞𝑓⦾𝑔 and 𝑓⦾𝕄𝑞𝑔 is given by: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝑓⦾𝑔}(𝑢𝜑) = √𝑗2𝜋𝐹

¯

𝑆
𝜑
(−𝑢𝜑 − 𝑞)𝐺𝑆

𝜑
(𝑢𝜑)         (79) 

 

Ŧ𝑆
𝜑
{𝑓⦾𝕄𝑞𝑔}(𝑢𝜑) = √𝑗2𝜋𝐹

¯

𝑆
𝜑
(−𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑞)        (80) 

 

where the symbol 𝕄𝑞 represents the modulation operator, 

i.e. the modulation by𝑞 of a function 𝑥(𝑡), 𝕄𝑞𝑥(𝑡) =

𝑒𝑗𝑞𝑡𝑥(𝑡), 𝑞 ∈ ℝ. 

 

Proof: The modulation convolution operator 𝕄𝑞𝑓⦾𝑔 is 

given by: 

 

(𝕄𝑞𝑓⦾𝑔)(𝑡) = ∫ 𝑒𝑗𝑞𝜏𝑓
¯

(𝜏)𝑔(𝑡 + 𝜏)𝑊𝑐𝑟(𝜏, 𝑡)𝑑𝜏
∞

−∞
         (81) 

 

where 𝑊𝑐𝑟(𝜏, 𝑡) = 𝑒
𝑗𝜏(𝜏+𝑡) 𝑐𝑜𝑡𝜑. It implies: 

 

(𝕄𝑞𝑓⦾𝑔)(𝑡) = ∫ 𝑒𝑗𝑞𝜏𝑓
¯

(𝜏)𝑔(𝑡 + 𝜏)𝑒𝑗𝜏(𝜏+𝑡)𝑐𝑜𝑡𝜑𝑑𝜏
∞

−∞
 (82) 

 

Now, from the definition of SmFrFT (7), one obtains: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝑓⦾𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ {𝕄𝑞𝑓(𝑡)⦾𝑔(𝑡)}
∞

−∞
𝑒−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡                   (83) 

 

Simplifying (83) further, one obtains: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝑓⦾𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ ∫ 𝑓

¯

(𝜏)
∞

−∞
𝑔(𝑡 +

∞

−∞

𝜏) 𝑒𝑗𝑞𝜏+𝑗𝜏
(𝜏+𝑡) 𝑐𝑜𝑡𝜑−𝑗𝑢𝜑𝑡+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝜏𝑑𝑡                              (84) 

 

By letting (𝑡 + 𝜏) = 𝑣, (84) reduces to: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝑓⦾𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑓

¯

(𝜏)
∞

−∞
𝑒𝑗(𝑢𝜑+𝑞)𝜏+

𝑗

2
𝜏2 𝑐𝑜𝑡𝜑𝑑𝜏 ×

1

√𝑗2𝜋
∫ ℎ(𝑣)
∞

−∞
𝑒−𝑗𝑢𝜑𝑣+

𝑗

2
𝑣2 𝑐𝑜𝑡𝜑𝑑𝑣 × √𝑗2𝜋  

 

Simplifying further, one obtains: 
 

Ŧ𝑆
𝜑
{𝕄𝑞𝑓⦾𝑔}(𝑢𝜑) = √𝑗2𝜋𝐹

¯

𝑆
𝜑
(−𝑢𝜑 − 𝑞)𝐺𝑆

𝜑
(𝑢𝜑),       (85) 

 

which proves the modulation correlation property of the 

correlation theorem in SmFrFT domain. 

 

Similarly, for solving Ŧ𝑆
𝜑
{𝑓⦾𝕄𝑞𝑔}(𝑢𝜑) and utilizing the 

modulation correlation operator of function 𝑓⦾𝕄𝑞𝑔 as 

∫ 𝑓
¯

(𝜏)𝑒𝑗𝑞(𝑡+𝜏)𝑔(𝑡 + 𝜏)𝑊𝑐𝑟(𝜏, 𝑡)𝑑𝜏
∞

−∞
, where 𝑊𝑐𝑟(𝜏, 𝑡) =

𝑒𝑗𝜏(𝜏+𝑡) 𝑐𝑜𝑡𝜑and based on the previous steps, one obtains: 
 

Ŧ𝑆
𝜑
{𝑓⦾𝕄𝑞𝑔}(𝑢𝜑) = √𝑗2𝜋𝐹

¯

𝑆
𝜑
(−𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑞),        (86) 

which proves the modulation correlation property of the 

correlation theorem in SmFrFT domain. 

 

Special case: In case of FT, (85) and (86) reduce to (for 𝜑 =
𝜋 2⁄ ) 

 

Ŧ𝑆
𝜋 2⁄
{𝕄𝑞𝑓⦾𝑔}(𝑢𝜋 2⁄ ) = √𝑗2𝜋𝐹

¯

𝑆
𝜋 2⁄
(−𝑢𝜋 2⁄ −

𝑞)𝐺𝑆
𝜋 2⁄
(𝑢𝜋 2⁄ ) = √𝑗2𝜋𝐹

¯

𝑆(−𝜔 − 𝑞)𝐺𝑆(𝜔), 

i.e., ℱ{𝕄𝑞𝑓⦾𝑔}(𝜔) = √𝑗2𝜋𝐹
¯

𝑆(−𝜔 − 𝑞)𝐺𝑆(𝜔)          (87) 

 

Ŧ𝑆
𝜋 2⁄ {𝑓⦾𝕄𝑞𝑔}(𝑢𝜋 2⁄ ) = √𝑗2𝜋𝐹

¯

𝑆
𝜋 2⁄ (−𝑢𝜋 2⁄ )𝐺𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ − 𝑞)  

ℱ{𝑓⦾𝕄𝑞𝑔}(𝜔) = √𝑗2𝜋𝐹
¯

𝑆(−𝜔)𝐺𝑆(𝜔 − 𝑞)                    (88) 

 

This means that the proposed modulation correlation 

property behaves similar to the Euclidean FT, as is evident 

from (87) and (88) except for the amplitude factor. 

 

Property 3 (Time-Frequency shift Convolution): Let 𝑓, 

𝑔 ∈ 𝐿1(ℝ). The SmFrFT of 𝕄𝑞𝕊𝑑𝑓⦾𝑔 and 𝑓⦾𝕄𝑞𝕊𝑑g is 

given by: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) = √𝑗2𝜋𝑒

−𝑗(𝑢𝜑−𝑞)𝑑+
𝑗

2
𝑑2 𝑐𝑜𝑡 𝜑𝐹

¯

𝑆
𝜑
(𝑢𝜑 −

𝑞 − 𝑑 𝑐𝑜𝑡 𝜑)𝐺𝑆
𝜑
(𝑢𝜑)            (89) 

 
Ŧ𝑆
𝜑
{𝑓⦾𝕄𝑞𝕊𝑑𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
−𝑗(𝑢𝜑−𝑞)𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡 𝜑𝐹

¯

𝑆
𝜑
(−𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑞 − 𝑑 𝑐𝑜𝑡 𝜑)        (90) 

 

where the symbol 𝕊𝑑 and 𝕄𝑞 represent the shift operator of 

a function by delay 𝑑 and the modulation operator of a 

function by 𝑞, i.e. for the function 𝑥(𝑡), 𝕊𝑑𝑥(𝑡) = 𝑥(𝑡 − 𝑑), 
𝑑 ∈ ℝ and 𝕄𝑞𝑥(𝑡) = 𝑒

𝑗𝑞𝑡𝑥(𝑡), 𝑞 ∈ ℝ. 

 

Proof: The time-frequency shift correlation operator is 

given by: 

 

(𝕄𝑞𝕊𝑑𝑓⦾𝑔)(𝑡) = ∫ 𝑒𝑗𝑞𝜏
∞

−∞
𝑓
¯

(𝜏 − 𝑑)𝑔(𝑡 + 𝜏)𝑊𝑐𝑟(𝜏, 𝑡)𝑑𝜏      (91) 

 

where 𝑊𝑐𝑟(𝜏, 𝑡) = 𝑒
𝑗𝜏(𝜏+𝑡) 𝑐𝑜𝑡𝜑. It implies: 

 

(𝕄𝑞𝕊𝑑𝑓⦾𝑔)(𝑡) = ∫ 𝑒𝑗𝑞𝜏
∞

−∞
𝑓
¯

(𝜏 − 𝑑)𝑔(𝑡 +

𝜏)𝑒𝑗𝜏(𝜏+𝑡)𝑐𝑜𝑡𝜑𝑑𝜏                             (92) 

 

The SmFrFT of (92) is obtained as: 
 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ {𝕄𝑞𝕊𝑑𝑓(𝑡)⦾𝑔(𝑡)}
∞

−∞
𝑒−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝑡        (93) 

 

Simplifying (93) further, one obtains: 
 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ ∫ 𝑓

¯

(𝜏 − 𝑑)
∞

−∞

∞

−∞
𝑔(𝑡 +

𝜏)𝑒𝑗𝑞𝜏+𝑗𝜏
(𝜏+𝑡)𝑐𝑜𝑡𝜑−𝑗𝑡𝑢𝜑+

𝑗

2
𝑡2 𝑐𝑜𝑡𝜑𝑑𝜏𝑑𝑡                             (94) 
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By letting (𝑡 + 𝜏) = ϛ, (94) is simplified as: 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑓

¯

(𝜏 −
∞

−∞

𝑑) 𝑒𝑗𝑞𝜏+𝑗𝑢𝜑𝜏+
𝑗

2
𝜏2 𝑐𝑜𝑡𝜑𝑑𝜏 ×

1

√𝑗2𝜋
∫ 𝑔(ϛ)
∞

−∞
𝑒−𝑗𝑢𝜑ϛ+

𝑗

2
ϛ2 𝑐𝑜𝑡𝜑𝑑ϛ × √𝑗2𝜋                       (95) 

 

Let (𝜏 − 𝑑) = 𝜉, (95) reduces to 

 

Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) =

1

√𝑗2𝜋
∫ 𝑓

¯

(𝜉)
∞

−∞
𝑒−𝑗(𝑢𝜑−𝑞−𝑑𝑐𝑜𝑡𝜑)𝜉+

𝑗

2
𝜉2 𝑐𝑜𝑡𝜑𝑑𝜉 × √𝑗2𝜋 ×

𝑒−𝑗𝑢𝜑𝑑+𝑗𝑞𝑑+
𝑗

2
𝑑2 𝑐𝑜𝑡𝜑 × 𝐺𝑆

𝜑
(𝑢𝜑)           (96) 

 

Solving (96) further, by letting the complex-valued function 

𝑓(𝜉) = 𝑓1(𝜉) + 𝑗𝑓2(𝜉), one obtains: 

 

Thus, Ŧ𝑆
𝜑
{𝕄𝑞𝕊𝑑𝑓⦾𝑔}(𝑢𝜑) = √𝑗2𝜋𝑒

−𝑗(𝑢𝜑−𝑞)𝑑+
𝑗

2
𝑑2 𝑐𝑜𝑡 𝜑𝐹

¯

𝑆
𝜑
(𝑢𝜑 −

𝑞 − 𝑑 𝑐𝑜𝑡 𝜑)𝐺𝑆
𝜑
(𝑢𝜑),                               (97) 

 

which proves the time-frequency shift correlation property 

of the correlation theorem in SmFrFT domain. 

 

Similarly, for solving Ŧ𝑆
𝜑
{𝑓⦾𝕄𝑞𝕊𝑑𝑔}(𝑢𝜑) and utilizing the 

shift and modulation correlation operator of function 

𝑓⦾𝕄𝑞𝕊𝑑𝑔 as ∫ 𝑓
¯

(𝜏)𝑒𝑗𝑞(𝑡+𝜏)𝑔(𝑡 + 𝜏 − 𝑑)𝑊𝑐𝑟(𝜏, 𝑡)𝑑𝜏
∞

−∞
, 

where 𝑊𝑐𝑟(𝜏, 𝑡) = 𝑒
𝑗𝜏(𝜏+𝑡) 𝑐𝑜𝑡𝜑 and based on the previous 

steps, one obtains: 

 

Ŧ𝑆
𝜑
{𝑓⦾𝕄𝑞𝕊𝑑𝑔}(𝑢𝜑) =

√𝑗2𝜋𝑒
−𝑗(𝑢𝜑−𝑞)𝑑+

𝑗

2
𝑑2 𝑐𝑜𝑡 𝜑𝐹

¯

𝑆
𝜑
(−𝑢𝜑)𝐺𝑆

𝜑
(𝑢𝜑 − 𝑞 − 𝑑 𝑐𝑜𝑡 𝜑),    (98) 

 

which proves the time-frequency shift correlation property 

of the correlation theorem in SmFrFT domain. 

 

Special case: In case of FT, (97) and (98) reduce to (for 𝜑 =
𝜋 2⁄ ) 

 

Ŧ𝑆
𝜋 2⁄ {𝕄𝑞𝕊𝑑𝑓⦾𝑔}(𝑢𝜋 2⁄ ) =

√𝑗2𝜋𝑒−𝑗(𝑢𝜋 2⁄ −𝑞)𝑑𝐹
¯

𝑆
𝜋 2⁄ (𝑢𝜋 2⁄ − 𝑞)𝐺𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ ), 

i.e. ℱ{𝕄𝑞𝕊𝑑𝑓⦾𝑔}(𝜔) = √𝑗2𝜋𝑒
−𝑗(𝜔−𝑞)𝑑𝐹

¯

𝑆(𝜔 − 𝑞)𝐺𝑆(𝜔) 

                         (99) 

 

Ŧ𝑆
𝜋 2⁄ {𝑓⦾𝕄𝑞𝕊𝑑𝑔}(𝑢𝜋 2⁄ ) =

√𝑗2𝜋𝑒−𝑗(𝑢𝜋 2⁄ −𝑞)𝑑𝐹
¯

𝑆
𝜋 2⁄ (−𝑢𝜋 2⁄ )𝐺𝑆

𝜋 2⁄ (𝑢𝜋 2⁄ − 𝑞)  

i.e ℱ{𝑓⦾𝕄𝑞𝕊𝑑𝑔}(𝜔) = √𝑗2𝜋𝑒
−𝑗(𝜔−𝑞)𝑑𝐹

¯

𝑆(−𝜔)𝐺𝑆(𝜔 − 𝑞)  

                                (100) 

 

This means that the proposed time-frequency shift 

correlation property behaves similar to the Euclidean FT, as 

is evident from (99) and (100), except for the amplitude 

factor. 

 

Conclusion and Future Scope of Work 
In this study, an elegant analytical expression of 

convolution, product and correlation of two functions is 

introduced in the simplified fractional Fourier transform 

domain. The newly established convolution, product and 

correlation theorems along with their associated properties 

generalize very nicely the classical result of Euclidean 

Fourier transform. The proposed approach offers the 

following advantages. It has the added advantage of less 

computational complexity14 as compared to the conventional 

fractional Fourier transform definitions which will be 

beneficial for the reconfigurable implementation for 

different signal processing applications. 

 

As a future work, the sampling of the bandlimited signals in 

the SmFrFT domain will be investigated based on the 

derived convolution theorem, with the establishment of the 

different formulae of uniform sampling and low pass 

reconstruction. Further, the approach of simplified fractional 

Fourier transform could be elaborated in the linear canonical 

transform and other angular transforms which would prove 

to be an important mathematical tool for radar and sonar 

signal processing applications along with the reconfigurable 

implementation for viable signal processing applications. 
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